Problem of the Day 1

A $500 \mathrm{~cm}^{3}$ solution of hydrobromic acid has a pH of $3.00 .80 \mathrm{~cm}^{3}$ of the solution was found to be completely neutralized by $20.0 \mathrm{~cm}^{3}$ of ammonia solution. Determine the concentration of the ammonia solution and the mass concentration of the salt formed.
$[\mathrm{N}=14 \mathrm{~g} / \mathrm{mol} ; \mathrm{Br}=80 \mathrm{~g} / \mathrm{mol} ; \mathrm{H}=1.0 \mathrm{~g} / \mathrm{mol}]$

SOLUTION:

$[\mathrm{HBr}]=0.0010 \mathrm{moldm}^{-3}$
Moles of $\mathrm{HBr}=0.0010 \times 80=0.080 \mathrm{mmol}$
From equation of reaction: $\mathrm{HBr}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Br}$
Mole ratio $=1: 1$
Hence $\left[\mathrm{NH}_{3}\right]=0.080 / 20=0.0040 \mathrm{moldm}^{-3}$
$\left[\mathrm{NH}_{4} \mathrm{Br}\right]$ formed $=0.080 / 100=8.0 \times 10^{-4}$
Mass concentration of $\mathrm{NH}_{4} \mathrm{Br}=8.0 \times 10^{-4} \times 98$

$$
=0.0784 \mathrm{gdm}^{-3}=78.4 \mathrm{mgdm}^{-3}
$$

Problem of the Day 2

The reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow 2 \mathrm{C}$ was studied at $25^{\circ} \mathrm{C}$ and the following data were obtained.

Experiment	Initial $[\mathrm{A}] / \mathrm{mol} \mathrm{dm}^{-3}$	Initial $[\mathrm{B}] / \mathrm{mol} \mathrm{dm}^{-3}$	Rate of formation of $\mathrm{C} / \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
I	0.24	0.24	2.20×10^{-4}
II	0.48	0.24	8.80×10^{-4}
III	0.48	0.48	1.76×10^{-3}

Calculate the rate of formation of C for an experiment conducted at $25^{\circ} \mathrm{C}$ with reactant concentrations of $\mathrm{A}=\mathrm{B}=0.20 \mathrm{~mol} \mathrm{dm}^{-3}$.

SOLUTION

Determine the rate law expression

From expt. 1 and 2, when [B] remains constant, and [A] is doubled, rate increases four times From expt. 2 and 3, when [A] remains constant, and [B] is doubled, rate doubles Hence rate law expression $=$ Rate $=\mathbf{K}[\mathbf{A}]^{2}[\mathbf{B}]$

$$
\mathrm{R}=\mathrm{K}[\mathrm{~A}]^{2}[\mathrm{~B}]
$$

Hence, $\mathrm{K}=\frac{R}{[A]^{2}[B]}$. Using the values of experiment, I (or II or III)
$\mathrm{K}=\frac{2.2 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}}{(0.24)^{2}(0.24) \mathrm{mol}^{3} \mathrm{dm}^{-9}}=\mathbf{1 . 5 9} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{~ m o l}^{-2} \mathbf{~ d m}^{6} \mathbf{s}^{\mathbf{- 1}}$

Calculate rate for new experiment

For the experiment $[\mathrm{A}]=[\mathrm{B}]=0.20 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{aligned}
\text { Rate of formation } & =1.59 \times 10^{-2} \mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}\left([0.20]^{2}[0.20]\right) \mathrm{mol}^{3} \mathrm{dm}^{-9} \\
& =\mathbf{1 . 2 7} \times \mathbf{1 0}^{-4} \mathbf{~ m o l ~ d m}^{-\mathbf{3}} \mathbf{s}^{\mathbf{- 1}}
\end{aligned}
$$

Problem of the Day 3

To determine the amount of ascorbic acid (vitamin C) in $500 \mathrm{~cm}^{3}$ of fruit juice purchased, a student reacts the ascorbic acid contained in the juice with an excess of iodine and back-titrates the excess iodine with thiosulphate solution. The student reacts $25 \mathrm{~cm}^{3}$ of orange juice with 30 cm^{3} of $0.080 \mathrm{moldm}^{-3}$ of iodine. At the end of the reaction, the excess iodine required $20 \mathrm{~cm}^{3}$ of 0.20 moldm $^{-3}$ of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Determine the mass of ascorbic acid present in the fruit juice purchased. $[\mathrm{C}=12 \mathrm{~g} / \mathrm{mol} ; \mathrm{O}=16 \mathrm{~g} / \mathrm{mol} ; \mathrm{H}=1.0 \mathrm{~g} / \mathrm{mol}]$.

The equation of reactions are as follows:

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}+\mathrm{I}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 \mathrm{H}^{-}+2 \mathrm{I}^{-} \\
& \mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}
\end{aligned}
$$

SOLUTION

Number of moles of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=0.020 \times 0.2=0.0040 \mathrm{~mol}$

From equation of reaction, number of moles of $\mathrm{I}_{2}=0.0040 / 2=0.0020 \mathrm{~mol}$

Moles of I_{2} added $=0.080 \times 0.030=0.0024 \mathrm{~mol}$

Hence moles of I_{2} which reacted $=$ moles of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}=0.0024-0.0020=0.00040 \mathrm{~mol}$

Moles of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$ in $500 \mathrm{~cm}^{3}$ of juice $=500 \times 0.00040 / 25=0.0080 \mathrm{~mol}$

Mass of ascorbic acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}=0.0080 \times 176=1.408=1.41 \mathrm{~g}$

Problem of the Day 4

The decay constant of a radioactive isotope is $1.155 \times 10^{-3} \mathrm{~s}^{-1}$.
a) How long will it take 19.2 mg of the isotope to decay to 0.15 mg
b) Given an initial 25.6 mg sample of the radionuclide, what amount of radionuclide will decay after 3600 seconds.
[Take $\ln 2$ as 0.693]

SOLUTION

Half-life $=0.693 / 1.155 \times 10^{-3}=\mathbf{6 0 0} \mathbf{s}=\mathbf{1 0}$ minutes
19.2 mg to 0.15 mg occurs in $\mathbf{7}$ half-lives.

Hence time taken $=7 \times 10$ minutes $=\mathbf{7 0}$ minutes $=\mathbf{4 2 0 0}$ seconds
3600 seconds $=60$ minutes $=\mathbf{6}$ half-lives
After 6 half-lives amount of original 25.6 mg remaining will be $\mathbf{0 . 4 0} \mathbf{~ m g}$.
Amount decayed after $3600 \mathrm{~s}=25.6-0.40=\mathbf{2 5 . 2} \mathbf{~ m g}$

Problem of the Day 5

A 0.864 g sample containing silver was dissolved in $400 \mathrm{~cm}^{3}$ of water and reacted with 30.0 cm^{3} of $0.500 \mathrm{moldm}^{-3}$ of potassium iodide solution. The resulting precipitate was carefully washed, dried to a constant mass, and weighed to obtain a mass of 0.470 g . Determine the percentage composition by mass of silver in the sample.
Given that, 200 mg of silver is required to make a coin, how many coins can be made from the sample given?
$[\mathrm{K}=39.0 \mathrm{~g} / \mathrm{mol} ; \mathrm{I}=127 \mathrm{~g} / \mathrm{mol} ; \mathrm{Ag}=108 \mathrm{~g} / \mathrm{mol}]$

SOLUTION

Precipitate $=\mathrm{AgI}$
Equation of reaction $=\mathrm{Ag}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}(\mathrm{s})$
Mass of $\mathrm{AgI}=0.470 \mathrm{~g}$
Molar mass of $\mathrm{AgI}=235 \mathrm{~g} / \mathrm{mol}$
Moles of $\mathrm{AgI}=0.470 / 235=0.00200 \mathrm{~mol}$
Mass of $\mathrm{Ag}=0.00200 \times 108=0.216 \mathrm{~g}$
Percentage of silver in sample $=0.216 / 0.860 \times 100=25.0 \%$
Sample contains 216 mg of silver. Hence only one coin can be made from sample.

Problem of the Day 6

A hydrocarbon has the molecular formular $\mathrm{C}_{5} \mathrm{H}_{10}$. Give the names of all possible structures of the hydrocarbon.

SOLUTION

1) 1-pentene
2) 2-pentene
3) 2-methyl-1-butene
4) 2-methyl-2-butene
5) 3-methyl-1-butene
6) Cyclopentane
7) Methyl cyclobutane
8) 1,1-dimethylcylopropane
9) 1,2-dimethylcylopropane

ROUND 3

PROBLEM OF THE DAY C1

A hydrocarbon Q is made up of 85.7% carbon and 14.3% hydrogen. At $127^{\circ} \mathrm{C}$ and 80.0 kPa $0.510 \mathrm{dm}^{3}$ of the hydrocarbon burns in excess oxygen to give $2.04 \mathrm{dm}^{3}$ of CO_{2} and $2.04 \mathrm{dm}^{3}$ of water vapour. Calculate the molecular formula of the hydrocarbon from the data given. The Ideal Gas constant is $8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
$\mathrm{C}=12.0 ; \mathrm{H}=1.00$

Ans:

Hence 1 mol Q burns to give $4 \mathrm{~mol} \mathrm{CO}_{2(\mathrm{~g})}$ and $4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Hence Molecular formula of Q $\mathrm{C}_{4} \mathrm{H}_{8}$.
[Note Full marks not to be awarded if the deduction is not fully shown.]

ROUND 3

PROBLEM OF THE DAY C2

The balanced equation for the gas-phase decomposition of compound A to B and C is as follows:

$$
2 \mathrm{~A}_{(\mathrm{g})} \quad \rightleftharpoons \quad 2 \mathrm{~B}_{(\mathrm{g})} \quad+\quad \mathrm{C}_{(\mathrm{g})}
$$

The equilibrium constant K_{c} of the reaction at $250^{\circ} \mathrm{C}$ is $1.08 * 10^{-11}$.
a) Write down the expression for the equilibrium constant K_{c} of the reaction.
b) Calculate the equilibrium concentration of $\mathrm{A}_{(\mathrm{g})}, \mathrm{B}_{(\mathrm{g})}$ and $\mathrm{C}_{(\mathrm{g})}$ of the reaction if the initial concentration of $\mathrm{A}_{(\mathrm{g})}$ is $0.100 \mathrm{moldm}^{-3}$.
c) State a reasonable assumption made in the calculation.
d) Predict the effect of an increase in the total pressure on the equilibrium process.

Ans: a) $\quad \mathrm{K}_{\mathrm{c}} \quad=\quad[\mathrm{B}]^{2}[\mathrm{C}] /[\mathrm{A}]^{2}$

b)	$2 \mathrm{~A}_{(\mathrm{g})}$	\rightleftharpoons	$2 \mathrm{~B}_{(\mathrm{g})}$	+	$\mathrm{C}_{(\mathrm{g})}$.
Initial conc.	0.100		0.00		0.00
At equil.	(0.100-2x)		2 x		x

$\mathrm{Kc}=(2 \mathrm{x})^{2}(\mathrm{x}) /(0.100-2 \mathrm{x})^{2}=4 \mathrm{x}^{3} /(0.100-2 \mathrm{x})^{2}$.
$\approx 4 x^{3} /(0.100)^{2}=1.08 * 10^{-11}$
$4 x^{3}=1.08 * 10^{-13} ; \quad \mathrm{x}^{3}=27.0^{*} 10^{-15}$
$\mathrm{x}=\quad=\quad 3.00^{*} 10^{-5} \mathrm{moldm}^{-3}$.
Hence conc of $\mathbf{A}=0.100$ or $1.00^{*} 10^{-1} \quad\left[\mathrm{OR} \quad 0.09994\right.$ or $\left.9.99^{*} 10^{-2}\right] \mathrm{moldm}^{-3}$.
Conc of $\mathbf{B}=6.00 * 10^{-5} \mathrm{moldm}^{-3} ; \quad$ Conc of $\mathbf{C}=3.00^{*} 10^{-5} \mathrm{moldm}^{-}$ 3
c) The assumption: The amount of A that decomposes at equilibrium is small and negligible compared with the initial concentration.
d) Increase in pressure will favour the reverse reaction OR less of A will be formed at higher pressure but the equilibrium constant K_{c} will not change.

ROUND 3

PROBLEM OF THE DAY C3

You are provided with about 10.0 g of neutral, solid organic compound X . The compound is contaminated with an organic acid. You are also informed that X is insoluble in cold ethanol but moderately soluble in hot ethanol. It is very soluble in cold ethyl ethanoate . It is insoluble in cold water but sparingly soluble in hot water.
a) Describe in detail how you would remove the organic acid compound from X and get X ready for recrystallisation.
b) State the solvent that would be most suitable for the re-crystallisation of X.

Ans: a) 1) The solid is transferred into a $200-400 \mathrm{~cm}^{3}$ beaker.
2) About 50 to $100 \mathrm{~cm}^{3}$ of ethyl ethanoate is added to the solid X to dissolve it.
3) The solution of X is transferred into a separating funnel and about $50 \mathrm{~cm}^{3}$ of dilute NaOH solution is added. Two layers are observed.
4) The funnel is stoppered and shaken intermittently for about two minutes.
5) The funnel is clamped long enough for the two layers to separate.
6) The stopper is removed, the tap of the funnel is opened, and the lower (aqueous) layer is run down.
7) The extraction is repeated a few (up to three) more times.
8) The ethyl ethanoate solution of X is washed twice with de-ionised water using the separating funnel.
9) The washing is repeated until the water tests neutral to litmus.
10) The solution of X is transferred into a conical flask and about 5 g of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4} is added to dry the solution.
11) After about 30 minutes the solution is filtered into a beaker and heated/boiled to remove the solvent(The solvent may be removed by distillation)
b) Solvent for re-crystallisation is ETHANOL

ROUND 3

PROBLEM OF THE DAY C4

An entrepreneur in Ghana decides to set up a factory by using the large limestone deposits close to her hometown to manufacture aqueous suspension of slaked lime which can be used as white paint. The limestone will be subjected to three processes to obtain the intended product as follows:

1. The limestone is heated in a kiln to give lime or calcium oxide and CO_{2} gas.
2. The lime is treated with a measured amount of water to convert it into solid slaked lime.
3. The slaked lime is then suspended or partially dissolved in excess water to obtain the paint.

Consider the following enthalpies of formation all in kJmol^{-1} and deduce if the heat to be generated from the three steps can be used to operate the factory on a sustainable basis: $\mathrm{CaCO}_{3(\mathrm{~s})} \quad-1206 ; \mathrm{CaO}_{(\mathrm{s})}-635 ; \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}-986 ; \quad \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}-543 ; \quad \mathrm{CO}_{2(\mathrm{~g})}-$ 394; $\quad \mathrm{H}_{2} \mathrm{O}_{(1)} \quad-286 ; \quad \mathrm{OH}^{-}(\mathrm{aq}) \quad-230$.

Ans: Step 1: $\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})} \quad+\quad \mathrm{CO}_{2(\mathrm{~g})}$.

$$
\Delta \mathbf{H}_{\mathbf{1}}(\text { reaction })=(-635+-394)-(-1206)=
$$

+177 kJ .
Step 2: $\mathrm{CaO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \rightarrow \quad \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}$

$$
\Delta \mathbf{H}_{2}(\text { reaction })=-986-(-635+-286) \quad=\quad-
$$

65.0 kJ .

Step 3: $\quad \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}+$ excess water $\rightarrow \mathrm{Ca}^{2+}{ }_{(\text {aq })}$ $+2 \mathrm{OH}^{-}{ }^{\text {(aq) }}$.

$$
\Delta \mathbf{H}_{3}(\text { reaction })=[-543+2(-230)]-[-986]=-
$$

17.0kJ

Sum of the three enthalpies of reaction $=+177-65.0-17.0=$ $+95.0 \mathrm{~kJ}$

Hence the three reactions will not generate any heat to sustain the three processes. Rather external heat will be needed to keep the factory running.
[Note: If the conclusion is not based on the ΔH 's of the three processes no marks should be awarded for the conclusion.]

ROUND 3

PROBLEM OF THE DAY C2

2,2,4-Trimethylpentane burns smoothly in internal combustion engines and for this reason assigned octane rating of 100. Its enthalpy of combustion can be calculated by i) Hess's Law and ii) use of bond energies. Determine the enthalpy of combustion by the two methods and comment on the relative values obtained. You may use the following enthalpies of formation and bond energies all in kJmol^{-1} :

2,2,4-Trimethylpentane $\quad-225 ; \quad \mathrm{CO}_{2(\mathrm{~g})}-394 ; \quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}-242 ; \quad \mathrm{C}=\mathrm{O} \quad 745 ; \quad \mathrm{C}-\mathrm{C}$
350; C-H 415; O-H 464; $\quad \mathrm{O}_{2} 498$.

Ans: 2,2,4-Trimethylpentane $=\quad \mathrm{C}_{8} \mathrm{H}_{18}$.
$\mathrm{C}_{8} \mathrm{H}_{18}+25 / 2 \mathrm{O}_{2} \quad \rightarrow \quad 8 \mathrm{CO}_{2(\mathrm{~g})}+\quad+\quad 9 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Enthalpy of combustion by Hess's Law:
$\Delta \mathrm{H}($ combustion $)=(-394 * 8+-242 * 9)-(-225)=-5105$ or -
$5.11 * 10^{3} \mathrm{kJmol}^{-1}$.

Enthalpy of combustion using bond energies:
Bonds broken $\quad=\quad 7 \mathrm{C}-\mathrm{C}+\quad 18 \mathrm{C}-\mathrm{H}+\quad 12.5 \mathrm{O} 2$
Energy required $=350 * 7+415 * 18+498 * 12.5=16145 \mathrm{~kJ}$
Bonds formed $=16 \mathrm{C}=\mathrm{O} \quad+\quad 18 \mathrm{O}-\mathrm{H}$
Energy given out $=-745 * 16+-464 * 18=-20,272 \mathrm{~kJ}$
$\Delta \mathrm{H}^{\prime}$ (combustion) $=16,145-20,272 \quad=\quad-4,127$ or -
$4.13^{*} 10^{3} \mathrm{kJmol}^{-1}$.

Enthalpy of combustion by Hess's Law is larger than the Enthalpy of combustion using bond energies.

The former is more accurate because it is obtained using enthalpies of formation which are experimental values whereas bond energies are approximate (or theoretical) values.

ROUND 3

PROBLEM OF THE DAY C1

A metal Q forms an oxide when 10.4 g of it reacts with $7.48 \mathrm{dm}^{3}$ of oxygen gas at $27.0^{\circ} \mathrm{C}$ and 100 kPa .

Determine the formula of the oxide and the percent oxygen by mass in the oxide. Atomic mass of Q is 52.0 . The Ideal Gas constant is $8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

Ans: Moles of Q made to react with oxygen $=10.4 / 52.0=0.200$.
Moles of oxygen gas, n reacting, $\quad=\mathrm{PV} / \mathrm{RT} ; \quad \mathrm{P}=100 \mathrm{kPa} ; \mathrm{V}=$ $7.48 \mathrm{dm}^{3} ; \quad \mathrm{T}=300 \mathrm{~K}$.

	$=$	$100 * 7.48 / 8.31 * 300=0.300$
Moles of oxygen atoms	$=0.600$	
Hence formula	$=\quad \mathrm{QO}_{3}$	
$\% \mathrm{O}$ by mass in QO_{3}		$[48.0 /(48.0+52)]^{*} 100$
		48.0

ROUND 3

PROBLEM OF THE DAY C4

Calculate the concentrations of $\mathrm{HCO}_{3}^{-}, \mathrm{OH}^{-}, \mathrm{CO}_{3}{ }^{2-}$, and $\mathrm{H}_{2} \mathrm{CO}_{3}$ in a 0.100 moldm ${ }^{-3}$ solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. You should state any assumption(s) made to enable you calculate the values. For the purpose of these calculations the first and second dissociation constants of $\mathrm{H}_{2} \mathrm{CO}_{3}$ may be taken as $5.00 * 10^{-7}$ and $5.00 * 10^{-11}$ respectively. The value of K_{w} is $1.00 * 10^{-14}$. Where necessary an answer may be left as a surd.

Ans: $\quad \mathrm{CO}_{3}{ }^{2-}$ is the conjugate base of $\mathrm{HCO}_{3}{ }^{-}$:
$\mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} ; \quad \mathrm{K}_{\mathrm{b} 2}=$?
$\mathrm{K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2}=1.00 * 10^{-14} / 5.00 * 10^{-11} \quad=\quad 2.00 * 10^{-4}$
$\mathrm{K}_{\mathrm{b} 2}=\left[\mathrm{HCO}_{3}{ }^{-}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{HCO}_{3}^{--}\right]^{2} /\left[\mathrm{CO}_{3}{ }^{2-}\right]$ since $\left[\mathrm{HCO}_{3}{ }^{-}\right]=\left[\mathrm{OH}^{-}\right]$

First assumption: The amount of $\mathrm{CO}_{3}{ }^{2-}$ reacting is negligible compared with its original concentration, hence $\left[\mathrm{CO}_{3}{ }^{2-}\right]=1.00^{*} 10^{-1} \mathrm{moldm}^{-3}$

$$
\begin{aligned}
& \text { Hence } \mathrm{K}_{\mathrm{b} 2}=2.00 * 10^{-4}=\left[\mathrm{HCO}_{3}^{-}\right]^{2} / 1.00 * 10^{-1} \\
& {\left[\mathrm{HCO}_{3}{ }^{-}\right]=\left(2.00 * 10^{-5}\right)^{1 / 2} \mathrm{moldm}^{-3}} \\
& {\left[\mathrm{OH}^{-}\right]} \\
& =\left(2.00^{*} 10^{-5}\right)^{1 / 2} \mathrm{moldm}^{-3}
\end{aligned}
$$

$\mathrm{HCO}_{3}{ }^{-}$as a conjugate base of $\mathrm{H}_{2} \mathrm{CO}_{3} \quad \mathrm{~K}_{\mathrm{b} 1} \quad=\quad \mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 1}$
$\mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 1}=1.00 * 10^{-14} / 5.00 * 10^{-7} \quad=2.00 * 10^{-8}$
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} ;$
$2.00 * 10^{-8}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]$
Second assumption: Since it is one equilibrium solution $\left[\mathrm{HCO}_{3}{ }^{-}\right]=$ [OH^{-}]

$$
\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=2.00^{*} 10^{-8} \mathrm{moldm}^{-3}
$$

Summary | $\left[\mathrm{HCO}_{3}{ }^{-}\right]$ | $=\left(2.00^{*} 10^{-5}\right)^{1 / 2} \mathrm{moldm}^{-3}$ |
| :--- | :--- |
| $\left[\mathrm{OH}^{-}\right]$ | $=$ |
| | $\left(2.00 * 10^{-5}\right)^{1 / 2} \mathrm{moldm}^{-3}$ |
| $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ | $=1.00 * 10^{-1} \mathrm{moldm}^{-3}$ |
| $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=$ | $2.00 * 10^{-8} \mathrm{moldm}^{-3}$ |
| | |
| | ROUND 3 |

PROBLEM OF THE DAY C3

Gaseous compounds A and B react to give product compound C according to the following equation:

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{C}(\mathrm{~g})
$$

1. Use the following kinetic data to determine the Rate Law for the reaction

Experiment	Initial concentration in moldm		Initial Rate $\left(\mathrm{moldm}^{-3} \mathrm{~s}^{-1}\right)$
	A	B	
1	0.100	0.100	$9.60^{*} 10^{-2}$
2	0.200	0.100	$2.16^{*} 10^{-1}$
3	0.300	0.100	

4	0.300	0.200	$4.32^{* 10^{-1}}$
5	0.300	0.300	$6.48 * 10^{-1}$

2. Use the results to determine the rate constant k , for the reaction and give the units.
3. Predict the initial rate of the reaction if the initial concentrations of A and B were 0.400 and 0.500 moldm $^{-3}$ respectively .

Ans: 1) Rate Law: Consider the results of Expts. 1 and 2; When concentration of A is doubled while that of B remains constant the initial rate increases by a factor of 4 . Hence the reaction is $2^{\text {nd }}$ order with respect to A. Consider Expts. 3 and 4. It can be deduced that the reaction is $1^{\text {st }}$ order with respect to B .

Hence The Rate Law: Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$.
2) Use any set of experimental results to calculate k. e.g. Experiment 1
$2.40 * 10^{-2}=\mathrm{k}\left(1.00 * 10^{-1}\right)^{2}\left(1.00 * 10^{-1}\right) \quad=\quad \mathrm{k}\left(1.00 * 10^{-3}\right)$
$\mathrm{k} \quad=\quad 2.40^{*} 10^{1} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
3) Using Expt. 1, when the concentration of A is increased from 0.100 to 0.400 moldm $^{-3}$ the rate increases by a factor of 16 . When the concentration of B is increased from 0.100 to 0.500 moldm $^{-3}$ the rate increases by a factor of 5 . Hence the total expected increase $=5 \times 16=80$

The expected rate $=80.0 * 2.40 * 10^{-2}=192 * 10^{-2}=$ 1.92 moldm $^{-3} \mathrm{~s}^{-1}$
[Note: Accept any mathematical method giving the right answer]

