What is the most likely mode of decay for each of the following nuclides?

- Carbon-15

Ans: Beta decay

- Uranium - 238 (atomic number 92)

Ans: alpha decay

- Nitrogen - 12

Ans: positron emission (or electron capture)

1. 100.0 g of an inorganic compound is found to contain 34.0 g of copper, 15.0 g of nitrogen, and 51.2 g of oxygen. Determine the empirical formula of the compound given that the atomic mass $(\mathrm{g} / \mathrm{mol})$ of Cu, N, and O is $64.0 ; 14.0$, and 16.0 respectively.

Ans: $\mathrm{CuN}_{2} \mathrm{O}_{6} \quad\left[\mathrm{OR} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right]$

$\mathrm{Cu}=\frac{34.0}{64}=0.53$
$\mathrm{N}=\frac{15.0}{14}=1.1$
$\mathrm{O}=\frac{51.2}{16}=3.2$
Hence ratio $=1: 2: 6$
2. 30.1 g of an inorganic compound is found to contain 15.0 g of copper, 7.62 g of sulphur, and 7.58 g of oxygen. Determine the empirical formula of the compound given that atomic masses $(\mathrm{g} / \mathrm{mol})$ of Cu, N, and O are $64.0 ; 14.0$, and 16.0 respectively.

Ans: $\mathbf{C u S O}_{2}$

$\mathrm{Cu}=\frac{15.0}{64}=0.234$
$S=\frac{7.50}{32}=0.234$
$\mathrm{O}=\frac{7.58}{16}=0.474$
Hence ratio $=1: 1: 2$
3. 40.0 g of an inorganic compound is found to contain 20.4 g of copper, 3.88 g of carbon and 15.6 g of oxygen. Determine the empirical formula of the compound given that atomic masses $(\mathrm{g} / \mathrm{mol})$ of Cu, C and O are 64.0; 12.0 and 16.0, respectively.

Ans: CuCO_{3}

$\mathrm{Cu}=\frac{20.4}{64}=0.32$
$\mathrm{C}=\frac{3.88}{12}=0.32$
$\mathrm{O}=\frac{15.6}{16}=0.98$
Hence ratio $=1: 1: 3$

1. The gaseous molecules, methane and oxygen are mixed in a $2: 1$ ratio by mass. What is the ratio of gases by volume? Take atomic masses ($\mathrm{g} / \mathrm{mol}$) of C, H and O as $12 ; 1.0$ and 16 , respectively.
Ans: 1:1
Molecular mass of $\mathrm{CH}_{4}=16$
Molecular mass of $\mathrm{O}_{2}=32$
Hence if present in 2:1 ratio, the number of moles and volume will be the same, hence 1:1
2. Determine the sum of the stoichiometric coefficients of all reactants and products in a balanced equation of the reaction: $\mathrm{N}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}$

Ans: 13
$2 \mathrm{~N}_{2}+5 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HNO}_{3}$
3. The elements X and Y have 6 and 3 electrons respectively in their outermost shell. What is likely to be the formula of the compound formed between X and Y ?

Ans: $\mathbf{Y}_{2} \mathbf{X}_{\mathbf{3}}$

1. Determine the most ionic compound in the list below:
$\mathrm{CaCl}_{2} ; \mathrm{KCl} ; \mathrm{MgCl}_{2} ; \mathrm{AlCl}_{3} ; \mathrm{CsCl}$

Ans: $\mathbf{C s C l}$

2. Which of the following compounds will exhibit the most hardness?
$\mathrm{MgO} ; \mathrm{Al}_{2} \mathrm{O}_{3} ; \mathrm{Na}_{2} \mathrm{O} ; \mathrm{CaO} ; \mathrm{Li}_{2} \mathrm{O}$

Ans: $\mathrm{Al}_{2} \mathrm{O}_{3}$

3. Which of the following compounds has the highest covalent character?
$\mathrm{LiCl} ; \mathrm{NaCl} ; \mathrm{BeCl}_{2} ; \mathrm{RbCl} ; \mathrm{MgCl}_{2}$

Ans: BeCl_{2}

1. 0.25 mol of a hydrocarbon with an empirical formula $\mathrm{C}_{3} \mathrm{H}_{5}$ has a mass of 41 g . Determine the molecular formula of the compound. Take the atomic mass of carbon and hydrogen (g/mol) as 12 and 1.0 , respectively.

Ans: $\mathrm{C}_{12} \mathbf{H}_{20}$

Molar mass $=41 / 0.25=164 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=164 / 41=4$; Hence molecular formular $=\mathrm{C}_{12} \mathrm{H}_{20}$
2. An organic compound has the formula $\mathrm{C}_{\mathrm{X}} \mathrm{H}_{8} \mathrm{O}_{4}$. If 0.015 mol of the compound has a mass of 1.98 g , determine the value of X , per formula unit of the molecule. Take the atomic mass of carbon, oxygen and hydrogen ($\mathrm{g} / \mathrm{mol}$) as 12,16 and 1.0 , respectively.

Ans: $\mathbf{X = 5} \mathbf{5}$ carbon atoms

Molar mass $=1.98 / 0.015=132 \mathrm{~g} / \mathrm{mol}$
$\mathrm{X}=(132-72) / 12=5$
3. Given that one molecule of an organic compound with the empirical formula $\mathrm{CH}_{2} \mathrm{O}$ has a mass of $2.0 \times 10^{-22} \mathrm{~g}$, determine the molecular formula of the compound. Take the atomic mass of carbon, oxygen and hydrogen ($\mathrm{g} / \mathrm{mol}$) as 12,16 and 1.0 respectively and Avogadro's number as 6.0×10^{23}.

Ans: $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$

Molar mass $=2.0 \times 10^{-22} \times 6.0 \times 10^{23}=120 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=120 / 30=4$; Hence molecular formula $=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$

1. Given Avogadro's number as 6.02×10^{23}, what is the mass present in 1.51×10^{23} molecules of benzaldehyde, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$? Take the atomic mass $(\mathrm{g} / \mathrm{mol})$ of C, H and O as $12.0,1.00$ and 16.0, respectively.

Ans: $\mathbf{2 6 . 5}$ g
Molecular mass of benzaldehyde $=106 \mathrm{~g}$
Number of moles $=1.51 \times 10^{23} / 6.02 \times 10^{23}=0.25$ moles
Mass of benzaldehyde $=0.25 \times 106=26.5$
2. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{SiO}_{2}+\mathrm{HF} \rightarrow \mathrm{SiF}_{4}+\mathrm{H}_{2} \mathrm{O}$

Ans: 8

$$
\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

3. How many sigma and pi bonds each are present in methanal?

Ans: 1 pi bond and 3 sigma bonds

Identify the following species found on the Periodic Table given the information below:

1. Mass number 33; neutron number 18; number of electrons 18

Ans: \mathbf{P}^{3-}

2. Mass number 55; neutron number 30; number of electrons 22

Ans: $\mathbf{M n}^{\mathbf{3 +}}$

3. Mass number 66; neutron number 36; number of electrons 28

Ans: $\mathbf{Z n}^{\mathbf{2}}$

1. Determine the percentage of phosphorus present in phosphorus pentoxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ given the relative atomic masses of phosphorus and oxygen as 31 and 16 respectively.

Ans: 44 \%

Molar mass of $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)=142$

$$
\text { percentage of } \mathrm{P}=\frac{62}{142} \times 100=44 \%
$$

2. Determine the percentage of chromium present in the chromium oxide $\mathrm{Cr}_{2} \mathrm{O}_{3}$ given the relative atomic masses of chromium and oxygen as 52 and 16 respectively.

Ans: 68 \%
Molar mass of $\left(\mathrm{Cr}_{2} \mathrm{O}_{3}\right)=152 \quad$ percentage of $\mathrm{P}=\frac{104}{152} \times 100=68 \%$
3. Determine the percentage of chlorine present in dichlorine hexoxide $\left(\mathrm{Cl}_{2} \mathrm{O}_{6}\right)$ given the relative atomic masses of Chlorine and oxygen as 35 and 16 respectively.

Ans: 42 \%

Molar mass of $\left(\mathrm{Cr}_{2} \mathrm{O}_{3}\right)=166$
percentage of $\mathrm{P}=\frac{70}{166} \times 100=42 \%$

1. Calculate the number of moles of hydrogen gas released when 6.0 moles of Aluminum react with excess hydrochloric acid.

Ans: $\mathbf{9 . 0}$ moles

$2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$
2. Determine the sum of the stoichiometric coefficients of all reactants and products in a balanced equation of the reaction: $\mathrm{SiCl}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+\mathrm{HCl}$

Ans: 8
$\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$
3. Which nuclear species is formed when carbon-14 is bombarded with a proton to produce nitrogen-14?

Ans: Neutron

Give the name of the major product formed in each of the following reactions

1. The Reaction of benzene with chlorine in the presence of aluminum chloride

Ans: chlorobenzene

2. The reaction of 2-methylpropane with a limited amount of chlorine gas

Ans: 2-chloro-2-methyl propane

3. The reaction of butanoic acid and methylamine

Ans: N-methyl butanamide

During the production of pure iron, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ reacts with carbon monoxide, CO , according to the reaction: $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

1. Given that 80 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 84 g of CO react, determine which reactant is the limiting reagent and by what amount. You are given molecular mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and CO as 160 and $28 \mathrm{~g} / \mathrm{mol}$, respectively.

Ans: $\mathrm{Fe}_{2} \mathrm{O}_{3}$, limited by $\mathbf{0 . 5 0} \mathbf{~ m o l}$

n $\mathrm{Fe}_{2} \mathrm{O}_{3}=80 / 160=0.50 \mathrm{~mol} \quad \mathrm{n} \mathrm{CO}=84 / 28=3.0 \mathrm{~mol}$
n $\mathrm{Fe}_{2} \mathrm{O}_{3}$ required $=\frac{1}{3} \times 3.0 \mathrm{~mol}=1.0 \mathrm{~mol}$; but only 0.50 mol present
2. Given that 80 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 84 g of CO reacts, determine which reactant is in excess and by what amount. You are given molecular mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and CO as 160 and $28 \mathrm{~g} / \mathrm{mol}$, respectively.

Ans: CO, excess by 1.5 mols

$n \mathrm{Fe}_{2} \mathrm{O}_{3}=80 / 160=0.50 \mathrm{~mol} \quad \mathrm{n} \mathrm{CO}=84 / 28=3.0 \mathrm{~mol}$
n CO required $=\frac{3}{1} \times 0.50 \mathrm{~mol}=1.5 \mathrm{~mol} ; \quad$ but 3.0 mol present
3. How many grams of iron will be produced from the reaction of excess $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 84 g of CO ? You are given molecular mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and CO as 160 and $28 \mathrm{~g} / \mathrm{mol}$ respectively and atomic mass of Fe as $56 \mathrm{~g} / \mathrm{mol}$.

Ans: 112 g

$\mathrm{nCO}=84 / 28=3.0 \mathrm{~mol}$

$$
\mathrm{nFe}==\frac{2}{3} \times 3.0 \mathrm{~mol}=2.0 \mathrm{~mol}
$$

1. How many moles of phosphorus is present in 14.2 g of $\mathrm{P}_{4} \mathrm{O}_{10}$? Take the atomic mass $(\mathrm{g} / \mathrm{mol})$ of phosphorus and oxygen as 31 and 16 , respectively.

Ans: $\mathbf{n}(\mathbf{P})=\mathbf{0 . 2 0} \mathbf{~ m o l}$
$\mathrm{n}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)=14.2 / 284=0.050 \mathrm{~mol} ; \mathrm{P}=4 \times 0.05=0.20 \mathrm{~mol}$
2. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Ans: 13
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
3. How many unpaired electrons are present in the molecule NO?

Ans: one (1)

Write the equilibrium constant expression Kc for the following reversible reactions:

1. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$
Ans: $\mathrm{Kc}=\frac{\left[\mathrm{CS}_{2}\right]\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
2. $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{PbO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Ans: $\mathrm{Kc}=\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]$

3. $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Ans: $\mathrm{Kc}=\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{8}$

$\left[\mathrm{N}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{6}$

1. What mass of methanoic acid is required to completely neutralise a solution made of $50.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{moldm}^{-3} \mathrm{NaOH}$? Take atomic mass $(\mathrm{g} / \mathrm{mol})$ of C as $12 ; \mathrm{O}$ as $16 ; \mathrm{H}$ as 1.0 .

Ans: $\mathbf{0 . 4 6} \mathbf{g}$

Moles of $\mathrm{NaOH}=0.20 \mathrm{moldm}^{-3} \times 0.050 \mathrm{dm}^{3}=0.010 \mathrm{~mol}=$ moles of HCOOH
Mass of HCOOH needed $=46 \times 0.010=0.46 \mathrm{~g}$
2. Calculate the mass of solid that remains when $200 \mathrm{~cm}^{3}$ solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ of concentration $0.25 \mathrm{moldm}^{-3}$ is heated to dryness. Take the atomic mass $(\mathrm{g} / \mathrm{mol})$ of Na as 23 ; O as 16 ; and C as 12

Ans: 5.3 g

Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.20 \times 0.25=0.050 \mathrm{~mol}$
Molar mass $=106 \mathrm{~g} / \mathrm{mol} . \quad$ Hence mass present $=0.050 \times 106=5.3 \mathrm{~g}$
3. What mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ must be dissolved in $100 \mathrm{~cm}^{3}$ of solution to obtain a concentration of 0.50 moldm $^{-3}$? Atomic mass $(\mathrm{g} / \mathrm{mol})$ of $\mathrm{Na}=23 ; \mathrm{O}=16 ; \mathrm{S}=32$

Ans: 7.1 g
Moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}=0.10 \times 0.50=0.050$ mole
Mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}=0.050 \times 142=7.1 \mathrm{~g}$

1. Upon combustion, 0.40 g of a hydrocarbon produces 1.1 g of carbon dioxide. Determine the percentage composition of carbon in the compound. $(\mathrm{C}=12 ; \mathrm{O}=16, \mathrm{H}=1.0)$

Ans: 75 \%
Mass of $\mathrm{C}=12 / 44 \times 1.1=0.30 \mathrm{~g}$
$\% \mathrm{C}=0.30 / 0.40 \times 100=75 \%$
2. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{Ag}_{2} \mathrm{~S} \rightarrow \mathrm{Ag}+\mathrm{S}_{8}$

Ans: 25
$8 \mathrm{Ag}_{2} \mathrm{~S} \rightarrow 16 \mathrm{Ag}+\mathrm{S}_{8}$
3. Which of the hybrid orbitals in carbon has the highest percentage of s-character?

Ans: sp orbital (50\%)

Give the name of the major product formed from the reaction of HBr with each of the following:

1. 1-pentene

Ans: 2-bromopentane

2. 2-methyl-2-butene

Ans: 2-bromo-2-methylbutane

3. Cyclohexene

Ans: Bromo cyclohexane (or 1-bromo cyclohexane)

1. What mass of oxygen is needed to produce 90 g of water given that an excess amount of hydrogen reacts? Take the atomic mass ($\mathrm{g} / \mathrm{mol}$) of H and O as 1.0 and 16 respectively.

Ans: 80 g

Mol of $\mathrm{H}_{2} \mathrm{O}=90 / 18=5.0 \mathrm{~mol}$.
$\mathrm{n} \mathrm{O}_{2}=5.0 / 2=2.5 \mathrm{~mol} \quad$ Hence mass $=2.5 \times 32=80 \mathrm{~g}$
2. Determine the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ needed to produce 0.150 mol of carbon dioxide gas in a thermal decomposition reaction. Take the atomic mass $(\mathrm{g} / \mathrm{mol})$ of Na, C, and O as $23.0,12.0$ and 16.0 respectively.

Ans: 15.9 g

Molar mas of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$ since mole ratio is 1:1, mass $=106 \times 0.150=15.9 \mathrm{~g}$
3. Based on a reaction with solid carbon, determine the mass of oxygen needed to produce 16.8 g of carbon monoxide given that, oxygen is limited. Take the atomic mass $(\mathrm{g} / \mathrm{mol})$ of C and O as 12 and 16 respectively.

Ans: 9.6 g
Mol of $\mathrm{CO}=16.8 / 28=0.60 \mathrm{~mol} \quad \mathrm{~mol}$ of $\mathrm{O}_{2}=0.60 / 2=0.30 \mathrm{~mol}$
Mass of $\mathrm{O}_{2}=9.6 \mathrm{~g}$

1. Given Avogadro's number as 6.0×10^{23}, how many atoms of oxygen are present in 4.0 moles of SO_{3} ?

Ans: $\mathbf{7 . 2} \times \mathbf{1 0}^{\mathbf{2 4}}$
Number of atoms $=6.0 \times 10^{23} \times 4 \mathrm{~mol} \times 3 \mathrm{O}$ atoms $=7.2 \times 10^{24}$
2. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{C}_{6} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Ans: 19

$$
\mathrm{C}_{6} \mathrm{H}_{8}+8 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

3. What is the maximum number of hydrogen bonds formed by a water molecule in ice?

Ans: four (4)

Indicate the values of all quantum numbers permissible for the following orbitals

1. 4 p

Ans: $n=4, l=1, m l=-1,0,+1$
2. 3 d

Ans: $n=3, l=2, m l=-2,-1,0,+1,+2$
3. 5 s

Ans: $n=5, l=0, m l=0$

1. Calculate the solubility in $\mathrm{mg} / \mathrm{dm}^{3}$ of BaCrO_{4} at $25^{\circ} \mathrm{C}$ given its solubility product is $\times 10^{-10}$. Take the molecular mass of BaCrO_{4} as $253 \mathrm{~g} / \mathrm{mol}$.

Ans: $\mathbf{2 . 5 3} \mathbf{~ m g} / \mathbf{d m} 3$

Solubility $=\sqrt{ } 1.0 \times 10^{-10}=1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$
Solubility in $\mathrm{mg} / \mathrm{dm}^{3}=1.0 \times 10^{-5} \times 253 \times 1000=2.53 \mathrm{mg}$
2. Calculate the molar solubility of BaSO_{4} in a 0.010 moldm ${ }^{3}$ solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ given that the solubility product of 1.1×10^{-10}.

Ans: $\mathbf{1 . 1} \times \mathbf{1 0}^{-8} \mathbf{~ m o l} / \mathrm{dm}^{3}$

$$
\begin{gathered}
\mathrm{BaSO}_{4} \rightleftharpoons \underset{\mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-}}{ } \begin{array}{c}
0.01+\mathrm{s}
\end{array}, ~
\end{gathered}
$$

Solubility, $\mathrm{s}=1.1 \times 10^{-10} / 0.010=1.1 \times 10^{-8} \mathrm{~mol} / \mathrm{dm}^{3}$
3. Calculate the molar solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ in a solution of pH 10 . Solubility product of $\mathrm{Cu}(\mathrm{OH})_{2}$ is 2.6×10^{-19}.

Ans: $\mathbf{2 . 6} \times \mathbf{1 0}^{-15} \mathrm{~mol} / \mathrm{dm}^{3}$
$\mathrm{OH}^{-}=0.00010 \mathrm{~mol} / \mathrm{dm}^{3}$

$$
\begin{array}{r}
\mathrm{Cu}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \\
2 \mathrm{~s}+0.00010
\end{array}
$$

Solubility, $\mathrm{s}=2.6 \times 10^{-19} / 0.00010=2.6 \times 10^{-15}$

1. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{Al}+\mathrm{Fe}_{3} \mathrm{~N}_{2} \rightarrow \mathrm{AlN}+\mathrm{Fe}$

Ans: 8
$2 \mathrm{Al}+\mathrm{Fe}_{3} \mathrm{~N}_{2} \rightarrow 2 \mathrm{AlN}+3 \mathrm{Fe}$
2. Given that, the atomic masses of manganese and astatine are 55 and 210 respectively, what mass of astatine will have the same number of particles as 2.2 g of manganese?

Ans: $\mathbf{8 . 4} \mathrm{g}$

Moles of $\mathrm{Mg}=2.2 / 55.0=0.040$
Hence equivalent mass of $\mathrm{At}=0.040 \times 210=8.4 \mathrm{~g}$
3. To determine the formula of a hydrocarbon, 0.66 g of the hydrocarbon produced 2.2 g of carbon dioxide when burned. Determine the percentage composition of carbon in the compound. ($\mathrm{C}=$ $12 ; \mathrm{O}=16, \mathrm{H}=1.0$)

Ans: 91 \%

Mass of $\mathrm{C}=12 / 44 \times 2.2=0.60 \mathrm{~g}$
$\% \mathrm{C}=0.60 / 0.66 \times 100=91 \%$
Indicate the cell notation for each of the following cell reactions

1. $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Fe}^{3+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Fe}^{2+}(\mathrm{aq})$

Ans: $\mathbf{C u}\left|\mathbf{C u}^{2+} \| \mathbf{F e}^{2+}, \mathbf{F e}^{3+}\right| \mathbf{P t}$
2. $2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Ans: $\mathbf{A g}\left|\mathbf{A g}^{+}\right| \boldsymbol{\mathbf { H } ^ { + }} \mathbf{H}_{\mathbf{2}} \boldsymbol{|} \mathbf{P t}$

3. $2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{Fe}^{3+}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{Fe}^{2+}(\mathrm{aq})$

Ans: $\mathbf{P t}\left|\mathbf{C l}_{2}\right| \mathbf{C l}^{-} \| \mathbf{F e}^{2+}, \mathbf{F e}^{\mathbf{3 +}} \mid \mathbf{P t}$

1. Determine the percent composition of carbon present in nicotine $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}\right)$ given the relative atomic masses of carbon, hydrogen, nitrogen and oxygen as $12,1.0,14$ and 16 respectively.

Ans: 74 \%

Molar mass of $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}\right)=162$

$$
\text { percentage of } \mathrm{C}=\frac{120}{162} \times 100=74 \%
$$

2. Determine the percent composition of carbon present in the alkaloid cytisine $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)$ given the relative atomic masses of carbon, hydrogen, nitrogen, and oxygen as $12,1.0,14$ and 16 respectively.

Ans: 69 \%
Molar mass of $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)=190 \quad$ Percentage of $\mathrm{C}=\frac{132}{190} \times 100=69 \%$
3. Determine the percent composition of carbon present in the drug, pregabalin $\left(\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{2}\right)$ given the relative atomic masses of carbon, hydrogen, nitrogen, and oxygen as $12,1.0,14$ and 16 respectively.

Ans: 60 \%

Molar mass of $\left(\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{2}\right)=159$
Percentage of $\mathrm{C}=\frac{96}{159} \times 100=60 \%$

1. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{SiCl}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{4} \mathrm{SiO}_{4}+\mathrm{HCl}$

Ans: 10
$\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{4} \mathrm{SiO}_{4}+4 \mathrm{HCl}$
2. Given that 0.20 moles of a compound $A_{3} B$ weighs 28 g , determine the atomic mass of element A if the atomic mass of element B is 14 g .

Ans: $\mathbf{4 2} \mathbf{~ g} / \mathrm{mol}$

Molecular mass of compound $=28 / 0.2=140$
Mass of element $\mathrm{A}=(140-14) / 3=42 \mathrm{~g} / \mathrm{mol}$
3. What is the maximum number of hydrogen bonds formed by molecules of trimethylamine?

Ans: zero (0)

The contact process for the manufacture of sulfuric acid involves the following equilibrium reaction: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-196 \mathrm{kJmol}^{-1}$

State and explain the effect of each of the following actions on the equilibrium of the reaction

1. An increase in pressure

Ans: Equilibrium will shift toward the formation of more product (right/forward)

An increase in pressure will favour the side with fewer moles of gas. Mole of reactants is 3 and moles of product is 2 , hence pressure will favour formation of product/forward reaction
2. An increase in temperature

Ans: Equilibrium will shift toward the formation of more reactants (left/backwards)

Since reaction is exothermic, increase in temperature will favour the formation of reactants
3. A decrease in the amount of oxygen gas

Ans: Equilibrium will shift toward the formation of more reactants (left/backwards)

More SO_{3} will breakdown to form O_{2} in other to negative the effect of the reduced concentration of O_{2}.

1. Ethyne reacts with oxygen in a ratio of 2:5. Calculate the enthalpy of bonds broken in this reaction. You are given the following bond energies in $\mathrm{kJ} / \mathrm{mol}$: $\mathrm{C} \equiv \mathrm{C}=840 ; \mathrm{C}-\mathrm{H}=415 ; \quad \mathrm{O}=\mathrm{O}=500$

Ans: $3500 \mathrm{~kJ} / \mathrm{mol}$

$2 \mathrm{C} \equiv \mathrm{C}=840 \times 2=1680$
$4 \mathrm{C}-\mathrm{H}=415 \times 4=1660$
$5 \mathrm{O}=\mathrm{O}=500 \times 5=2500$
Total bond energy $=5840 \mathrm{~kJ} / \mathrm{mol}$
2. Given that 4 moles of CO_{2} and 2 moles of $\mathrm{H}_{2} \mathrm{O}$ are produced from the reaction of ethyne and oxygen, calculate the enthalpy of bonds formed in the reaction. You are given the following bond energies in $\mathrm{kJ} / \mathrm{mol}$: $\mathrm{C}=\mathrm{O}=800 ; \mathrm{H}-\mathrm{O}=460$.
$8 \mathrm{C}=\mathrm{O}=800 \times 8=6400$
$4 \mathrm{H}-\mathrm{O}=460 \times 4=1840$
Total $=8240 \mathrm{~kJ} / \mathrm{mol}$
3. Nitrogen triiodide, NI_{3} decomposes to form nitrogen gas and iodide. Calculate the enthalpy change for this reaction. You are given the following bond energies in $\mathrm{kJ} / \mathrm{mol}: \mathrm{N}-\mathrm{I}=160 ; \quad \mathrm{N} \equiv \mathrm{N}$ = 950; $\mathrm{I}-\mathrm{I}=150$

Ans: $620 \mathrm{~kJ} / \mathrm{mol}$

Bonds broken

$3 \mathrm{~N}-\mathrm{I}=160 \times 3=480$

Bonds formed

$\mathrm{N} \equiv \mathrm{N}=950$
$\mathrm{I}-\mathrm{I}=150$

Enthalpy change $=1100-480=620 \mathrm{~kJ} / \mathrm{mol}$

1. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$

Ans: 25
$4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$
2. Given the atomic masses of nitrogen, hydrogen, oxygen and cerium as 14, 1.0, 16, and 140, $\mathrm{g} / \mathrm{mol}$ respectively, determine the mass of 1.0 mole of ammonium cerium (IV) nitrate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$

Ans: 546 g/mol

$17 \times 2+140+62 \times 6=546 \mathrm{~g} / \mathrm{mol}$
3. Name the nuclide formed when Vanadium- 52 undergoes a beta decay?

Ans: Chromium-52

Reforming of petroleum helps to convert high molecular weight hydrocarbons into low molecular weight high octane products. Name one major reaction that occurs during catalytic reforming of petroleum.

Ans:

1. Dehydrogenation

2. Isomerization
3. Cyclization
4. Aromatization
5. Hydrocracking
6. A molecule of an organic compound contains 8 carbon atoms which account for a total of 60% of its molecular mass. Determine the molecular mass of the compound given that the atomic mass of carbon is 12 .

Ans: $160 \mathrm{~g} / \mathrm{mol}$

Total mass of Carbon $=12 \times 8=98 \mathrm{~g}$
Molecular Mass $=(100 \times 96) / 60=160 \mathrm{~g} / \mathrm{mol}$
2. A hydrocarbon contains 13 carbon atoms which account for a total of 65% of its molecular mass. Determine the molecular mass of the compound given that the atomic mass of carbon is 12 .

Ans: $\mathbf{2 4 0}$ g/mol

Total mass of Carbon $=12 \times 13=156 \mathrm{~g}$
Molecular Mass $=(100 \times 156) / 65=240 \mathrm{~g} / \mathrm{mol}$
3. An aliphatic diol with molecular mass $174 \mathrm{~g} / \mathrm{mol}$ contains 10 carbon atoms. Determine the number of hydrogen atoms present in the alcohol given that the atomic mass of carbon is 12 , oxygen is 16 and hydrogen is 1.0

Ans: 22

Total mass of carbon $=12 \times 10=120$
Mass of oxygen $=16 \times 2=32$
Hence mass of $\mathrm{H}=174-152=22$

1. How many moles of oxygen atoms are present in 2.4 g of $\mathrm{S}_{2} \mathrm{O}_{8}$? Take the atomic mass $(\mathrm{g} / \mathrm{mol})$ of sulphur and oxygen as 32 and 16 , respectively.

Ans: $\mathbf{0 . 1 0} \mathbf{~ m o l}$

$\mathrm{n}\left(\mathrm{S}_{2} \mathrm{O}_{8}\right)=2.4 / 192=0.0125 \mathrm{~mol} . \mathrm{n}(\mathrm{O})=8 \times 0.0125=0.10 \mathrm{~mol}$
2. The gaseous molecules: $\mathrm{N}_{2} \mathrm{O}$ and CO_{2} are mixed in a ratio of $1: 3$ by mass. What is the ratio of gases by volume? Take atomic masses of N, C and O as $14 ; 12$ and 16 , respectively.

Ans: 1:3

Molecular mass of $\mathrm{N}_{2} \mathrm{O}=44$
Molecular mass of $\mathrm{CO}_{2}=44$
Since molecular mass is the same, volume ratio will be same, Hence 1:3
3. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}+\mathrm{O}_{2}$

Ans: 11
$4 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2} \quad$ (Accept only integers)

1. Which nuclear species is formed when boron-10 is bombarded with a proton to produce boron8 ?

Ans: Tritium

2. Identify the nuclear species formed when oxygen-16 is bombarded with nitrogen-14 to produce fluorine-16

Ans: carbon-14

3. Identify the nuclear species formed when Neon- 20 is bombarded with deuterium to produce an alpha particle.

Ans: Fluorine-18

4. Identify the nuclide formed when chlorine- 33 undergoes a positron decay?

Ans: sulphur-33

Given the following reduction enthalpies, write the standard cell notation for the cell reactions occurring and indicate the value of the emf.

1. $\mathrm{Cu}^{2+} / \mathrm{Cu} \quad E^{0}=0.337 \mathrm{~V}$
$A g+/ A g \quad E^{0}=0.800 \mathrm{~V}$

Ans: $\mathbf{C u}\left|\mathbf{C u}^{2+} \| \mathbf{A g}^{+}\right| \mathbf{A g}$

$\mathbf{e m f}=\mathbf{0 . 4 6 8} \mathbf{V}$
2. $\mathrm{Sn}^{2+} / \mathrm{Sn}$
$E^{0}=-0.137 \mathrm{~V}$
$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$
$E^{0}=0.770 \mathrm{~V}$
Ans: $\mathrm{Sn}\left|\mathrm{Sn}^{2+} \| \mathrm{Fe}^{\mathbf{2 +}}, \mathrm{Fe}^{\mathbf{3 +}}\right| \mathrm{Pt} \quad \mathrm{emf}=\mathbf{0 . 9 0 7} \mathrm{V}$
3. $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+} \quad E^{0}=0.148 \mathrm{~V}$
$\mathrm{Pb}^{4+} / \mathrm{Pb}^{2+} \quad E^{0}=1.667 \mathrm{~V}$
Ans: $\mathbf{P t}\left|\mathbf{S n}^{2+}, \mathbf{S n}^{\mathbf{4 +}} \| \mathbf{P b}^{\mathbf{4 +}}, \mathbf{P b}^{2+}\right| \mathbf{P t} \quad$ emf $=\mathbf{1 . 5 1 9} \mathbf{V}$
4. $\mathrm{Ti}^{2+} / \mathrm{Ti} \quad E^{o}=-0.163 \mathrm{~V}$
$\mathrm{U}^{4+} / \mathrm{U}^{3+} \quad E^{o}=-0.609 \mathrm{~V}$
Ans: $\mathbf{P t}\left|\mathbf{U}^{3+}, \mathbf{U}^{4+} \boldsymbol{\|} \mathbf{T i}^{\mathbf{2}+}\right| \mathbf{T i}$
$\mathbf{e m f}=\mathbf{0 . 4 4 6}$ V

1. Given the atomic masses of magnesium, boron and oxygen as 24,11 , and $16 \mathrm{~g} / \mathrm{mol}$ respectively, determine the mass of 2.0 moles of magnesium borate, $\mathrm{Mg}_{3}\left(\mathrm{BO}_{3}\right)_{2}$

Ans: $\mathbf{3 8 0} \mathbf{g}$
$24 \times 3+59 \times 2=190 \mathrm{~g} / \mathrm{mol}$
Mass of 2.0 moles $=190 \times 2=380 \mathrm{~g}$
2. Determine the maximum amount (in grams) of ammonia produced when 11.2 g each of hydrogen gas and nitrogen gas react according to the equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ Take atomic mass of nitrogen and hydrogen as 14.0 and 1.00 , respectively.

Ans:13.6 g
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\mathrm{n}\left(\mathrm{N}_{2}\right)=11.2 / 28=0.400$ mole; $\quad \mathrm{H}_{2}$ is in excess
mass of $\mathrm{NH}_{3}=0.400 \times 17 \times 2=13.6 \mathrm{~g}$
3. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Ans: 13
$2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

1. What is the change in the oxidation state of the reducing agent present in the reaction: $\mathrm{Cr}(\mathrm{OH})_{3}$
$+\mathrm{Br}_{2} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+\mathrm{Br}^{-}$

Ans: $\mathbf{+ 3}$ to +6 (or a change of $+\mathbf{3}$)

2. What is the oxidation state of the oxidized form of the reducing agent present in the reaction:
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}$

Ans: +4

3. How many moles of an ideal gas are present in $2.5 \mathrm{dm}^{3}$ of gas at a temperature of $27^{\circ} \mathrm{C}$ and 100 kPa ? Take the molar gas constant to be $8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Ans: $\mathbf{0 . 1 0} \mathbf{~ m o l}$

$$
\begin{aligned}
& \text { PV }=\text { nRT } \\
& \text { Mole of gas }=P V / R T=100000 \times 0.0025 /(8.3 \times 300)=0.10 \mathrm{~mol}
\end{aligned}
$$

4. 4.00 moles of a compound have a mass of 420 g . What is the molecular mass of the compound?

Ans: $\mathbf{1 0 5} \mathbf{g} / \mathbf{m o l}$

Molecular mass $=420 / 4.0=115 \mathrm{~g} / \mathrm{mol}$

