Find the values of the constants a and b if the straight lines

1. $a x+5 y=3$, and $4 x+$ by $=1$ intersect at the point $(2,-1)$

ANSWER: $\mathrm{a}=4, \mathrm{~b}=7$
$[2 \mathrm{a}-5=3,2 \mathrm{a}=8, \mathrm{a}=4,8-\mathrm{b}=1, \mathrm{~b}=7]$
2. $3 x+a y=4$, and $b x-5 y=6$ intersect at the point $(2,-2)$

ANSWER: $\mathrm{a}=1, \mathrm{~b}=-2$
$[6-2 \mathrm{a}=4,2 \mathrm{a}=2, \mathrm{a}=1,2 \mathrm{~b}+10=6,2 \mathrm{~b}=-4, \mathrm{~b}=-2]$
3. $a x+2 y=-3$, and $2 x+b y=6$ meet at the point $(1,2)$

ANSWER: $\mathrm{a}=-7, \mathrm{~b}=2$
$[\mathrm{a}+4=-3, \mathrm{a}=-7,2+2 \mathrm{~b}=6,2 \mathrm{~b}=4, \mathrm{~b}=2]$

Solve for x if the determinant of the matrix A has the given value.

1. $\mathrm{A}=\left(\begin{array}{cc}2 x & x \\ 3 & x\end{array}\right), \quad \operatorname{det} \mathrm{A}=5$

ANSWER: $\mathrm{x}=5 / 2,-1$
$\left[2 x^{2}-3 x-5=0,2 x^{2}-5 x+2 x-5=(x+1)(2 x-5)=0, x=5 / 2,-1\right]$
2. $\mathrm{A}=\left(\begin{array}{cc}3 x & 1 \\ x & 2 x\end{array}\right), \operatorname{det} \mathrm{A}=7$

ANSWER: $\mathrm{x}=7 / 6,-1$
$\left[6 x^{2}-x-7=0,6 x^{2}-7 x+6 x-7=(x+1)(6 x-7)=0, x=7 / 6,-1\right]$
3. $\mathrm{A}=\left(\begin{array}{cc}3 x & 2 \\ x & 5 x\end{array}\right), \operatorname{det} \mathrm{A}=1$

ANSWER: $x=1 / 3,-1 / 5$
$\left[15 x^{2}-2 x-1=(3 x-1)(5 x+1)=0, x=1 / 3, x=-1 / 5\right]$

1. Factorize completely $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$

ANSWER: $(a+b)^{4}$
2. In how many ways can 5 persons be seated in a row of 5 seats.

ANSWER: 120
[5! $=5 \times 4 \times 3 \times 2 \times 1=20 \times 6=120$]
3. Find the coordinates of the point of inflexion of the curve $y=x^{3}-6 x^{2}+16 x$.

ANSWER: $(2,16)$
$\left[d y / d x=3 x^{2}-12 x+16, d^{2} y / d x^{2}=6 x-12=0, x=2, y=8-24+32=16,(2,16)\right]$

Find the degree measures of the interior angles of a triangle if

1. the exterior angles are in the ratio 3:4:5

ANSWER: $90^{\circ}, 60^{\circ}, 30^{\circ}$
$[3 x+4 x+5 x=12 x=360, x=30$, exterior angles are $90,120,150$, interior angles are $180-90=90,180-120=60,180-150=30]$
2. the exterior angles are in the ratio 11: 12: 13

ANSWER: $70^{\circ}, \mathbf{6 0}{ }^{\circ}, \mathbf{5 0}^{\circ}$

$[11 x+12 x+13 x=36 x=360, x=10$, exterior angles are $110,120,130$, interior angles are $180-110=70,180-120=60,180-130=50]$
3. the exterior angles are in the ratio $5: 6: 7$

ANSWER: $80^{\circ}, 60^{\circ}, 40^{\circ}$
$[5 x+6 x+7 x=18 x=360, x=20$, exterior angles are $100,120,140$, interior
angles are $180-100=80,180-120=60,180-140=40]$

Find the values of A, B, C such that

1. $9 x^{2}+12 x+A=(3 x+B)^{2}$

ANSWER: $A=4, B=2$
$\left[9 x^{2}+12 x+A=9 x^{2}+6 B x+B^{2}, 12=6 B, B=2, A=B^{2}=2^{2}=4\right]$
2. $4 x^{2}+16 x+25=A(x+B)^{2}+C$

ANSWER: $A=4, B=2, C=9$
$\left[4 x^{2}+16 x+25=4\left(x^{2}+4 x\right)+25=4(x+2)^{2}+25-16, A=4, B=2, C=9\right]$
3. $5 x^{2}-30 x-6=A(x+B)^{2}+C$

ANSWER: $A=5, B=-3, C=-51$
$\left[5\left(x^{2}-6 x\right)-6=5(x-3)^{2}-45-6=A(x+B)^{2}+C, A=5, B=-3, C=-51\right]$

1. Find the sum to infinity of the series $5-5 / 3+5 / 9-5 / 27+\ldots$

ANSWER: 15/4, or 3.75

[exponential series $a=5, r=-1 / 3, S_{\infty}=a /(1-r)=5 /(1+1 / 3)=15 / 4$]
2. Find the solution set of the inequality $2 x^{2}-3 x-5>0$.

ANSWER: $\{x: x>5 / 2$, or $\mathrm{x}<-1\}$
$\left[2 x^{2}-3 x-5=(2 x-5)(x+1)>0, x>5 / 2\right.$ or $\left.x<-1\right]$
3. Find the sum in radians of the interior angles of a polygon of 17 sides.

ANSWER: 15π radians

$[(\mathrm{n}-2) \pi=(17-2) \pi=15 \pi$ radians $]$

Solve the equation for x from the logarithmic equation

1. $\log _{6} \mathrm{X}+\log _{6} \mathrm{X}^{2}=3$

ANSWER: $\mathrm{x}=6$
$\left[\log _{6} \mathrm{x}+2 \log _{6} \mathrm{x}=3 \log _{6} \mathrm{x}=3, \log _{6} \mathrm{x}=1, \mathrm{x}=6\right]$
2. $\log _{3} \mathrm{x}-\log _{3}(\mathrm{x}-1)=2$

ANSWER: $x=9 / 8$

$\left[\log _{3}(\mathrm{x} /(\mathrm{x}-1))=2, \mathrm{x} /(\mathrm{x}-1)=9, \mathrm{x}=9(\mathrm{x}-1), 8 \mathrm{x}=9, \mathrm{x}=9 / 8\right]$
3. $\log _{2} x=\log _{2}(x+3)-1$

ANSWER: $\mathrm{x}=3$

$\left[\log _{2}(\mathrm{x} /(\mathrm{x}+3))=\log _{2}(1 / 2), \mathrm{x} /(\mathrm{x}+3)=1 / 2,2 \mathrm{x}=\mathrm{x}+3, \mathrm{x}=3\right]$

Find the equation of the locus of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ moving in the coordinate plane such that $\mathrm{AP}=\mathrm{BP}$ given

1. $\mathrm{A}(-4,2)$ and $\mathrm{B}(2,-4)$

ANSWER: $\mathrm{y}=\mathrm{x}$

$\left[(x+4)^{2}+(y-2)^{2}=(x-2)^{2}+(y+4)^{2}, 8 x-4 y=-4 x+8 y, y=x\right]$
2. $A(3,-2)$ and $B(2,-3)$

ANSWER: $\mathrm{y}=-\mathrm{x}$

$\left[(x-3)^{2}+(y+2)^{2}=(x-2)^{2}+(y+3)^{2},-6 x+4 y=-4 x+6 y,-2 x=2 y, y=-x\right]$
3. $A(2,4)$ and $B(-2,-4)$

ANSWER: $\mathrm{y}=-\mathrm{x} / 2$

$\left[(x-2)^{2}+(y-4)^{2}=(x+2)^{2}+(y+4)^{2},-4 x-8 y=4 x+8 y, 16 y=-8 x\right.$, $y=-x / 2]$

1. Find the equation of the tangent to the curve $y^{2}=4 x$ at the point $A(1,-2)$

ANSWER: $y=-x-1$, or $x+y+1=0$
$[2 y d y / d x=4, d y / d x=2 / y, m=2 /-2=-1, y+2=-1(x-1), y=-x-1]$
2. Solve for x given $(1 / 25)^{x+2}=125^{x-2}$

ANSWER: $x=2 / 5$

$\left[5^{-2(x+2)}=5^{3(x-2)},-2 x-4=3 x-6,5 x=2, x=2 / 5\right]$
3. If $(2 x+3) /\left(x^{2}-x-6\right)=A /(x-3)+B(x+2)$, find the value of $(A+B)$

ANSWER: 2

$[2 x+3=A(x+2)+B(x-3)$, for $x=3,9=5 A, A=9 / 5$, for $x=-2,-1=-5 B, B=1 / 5$
$A+B=9 / 5+1 / 5=2]$

Find the coordinates of the vertices of a triangle whose sides are along the lines

1. $x+y=3, x=4, y=5$

ANSWER: $(4,5),(4,-1),(-2,5)$
$[x+y=3$ and $x=4, y=-1,(4,-1), x+y=3$ and $y=5, x=-2,(-2,5)$,
$x=4$ and $y=5$ gives $(4,5)]$
2. $x-y=5, x=-2, y=3$

ANSWER: $(8,3),(-2,3),(-2,-7)$
$[x-y=5$ and $x=-2, y=-7,(-2,-7), x-y=5$ and $y=3, x=8,(8,3)$,
$x=-2$ and $y=3$ gives $(-2,3)]$
3. $2 x+y=8, x=3, y=4$

ANSWER: $(3,2),(2,4),(3,4)$
$[2 x+y=8$ and $x=3, y=2,(3,2), 2 x+y=8$ and $y=4$, gives $x=2,(2,4)$, $x=3, y=4$ gives $(3,4)]$

Given that A and B are acute angles and $\sin A=3 / 5, \cos B=1 / \sqrt{2}$, evaluate.

1. $\sin (A-B)$

ANSWER: $-1 / 5 \sqrt{2}$, or $-\sqrt{2} / 10$
$[\sin (\mathrm{A}-\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}-\cos \mathrm{A} \sin \mathrm{B}=(3 / 5)(1 / \sqrt{2})-(4 / 5)(1 / \sqrt{2})=$ $-1 / 5 \sqrt{2}=-\sqrt{2} / 10]$
2. $\cos (\mathrm{A}-\mathrm{B})$

ANSWER: $7 / 5 \sqrt{ } 2$ or $7 \sqrt{2} / 10$
$[\cos (A-B)=\cos A \cos B+\sin A \sin B=(4 / 5)(1 / \sqrt{2})+(3 / 5)(1 / \sqrt{ } 2)$
$=7 / 5 \sqrt{ } 2=7 \sqrt{ } 2 / 10]$
3. $\sin (A+B)$

ANSWER: $7 / 5 \sqrt{ } 2$ or $7 \sqrt{2} / 10$
$[\sin (\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}+\cos \mathrm{A} \sin \mathrm{B}=(3 / 5)(1 / \sqrt{2})+(4 / 5)(1 / \sqrt{2})=$ $7 / 5 \sqrt{ } 2=7 \sqrt{2} / 10]$

1. Given $x=\cos \theta$, express $x / \sqrt{ }\left(1-x^{2}\right)$ as a trigonometric ratio.

ANSWER: $\cot \theta$, or $1 / \tan \theta$
$\left[\cos \theta / \sqrt{ }\left(1-\cos ^{2} \theta\right)=\cos \theta / \sqrt{ } \sin ^{2} \theta=\cos \theta / \sin \theta=\cot \theta\right]$
2. Find the coordinates of the point of inflexion of the curve $y=2 x^{3}-6 x^{2}+5 x-2$.

ANSWER: $(1,-1)$
$\left[\mathrm{dy} / \mathrm{dx}=6 \mathrm{x}^{2}-12 \mathrm{x}+5, \mathrm{~d}^{2} \mathrm{y} / \mathrm{dx}^{2}=12 \mathrm{x}-12=0, \mathrm{x}=1, \mathrm{y}=2-6+5-2=-1,(1,-1)\right]$
3. If $\mathrm{M}(\mathrm{a},-2)$ is the midpoint of the line segment joining the points $\mathrm{A}(6,-4)$ and $B(a, b)$ find the coordinates of B.
ANSWER: $(6,0)$
$[(a,-2)=((a+6) / 2,(b-4) / 2), a=(a+6) / 2, a=6,-2=(b-4) / 2, b=0, B(6,0)]$
Find the equation of the image of the given curve

1. $(x-3)^{2}+(y+3)^{2}=10$, after a reflection in the x - axis,

ANSWER: $(x-3)^{2}+(y-3)^{2}=10 \operatorname{accept}(x-3)^{2}+(3-y)^{2}=10$
$\left[(x, y) \rightarrow(x,-y),(x-3)^{2}+(-y+3)^{2}=10,(x-3)^{2}+(y-3)^{2}=10\right]$
2. $y^{2}=4 x$, after a reflection in the line $y=x$,

ANSWER: $\mathrm{x}^{2}=4 \mathrm{y}$ or $\mathrm{y}=\mathrm{x}^{2} / 4$
$\left[(x, y) \rightarrow(y, x), x^{2}=4 y\right.$, or $\left.y=x^{2} / 4\right]$
3. $x^{3}-y^{3}=10$, after a reflection in the y-axis.

ANSWER: $\mathrm{x}^{3}+\mathrm{y}^{3}=-10$
$\left[(x, y) \rightarrow(-x, y),(-x)^{3}-y^{3}=-x^{3}-y^{3}=10, x^{3}+y^{3}=-10\right]$

Find the acceleration vector of a particle of mass m acted upon by the forces

1. $(3 \mathbf{i}-4 \mathrm{j}) \mathrm{N},(-5 \mathrm{i}+\mathrm{j}) \mathrm{N},(5 \mathrm{i}-3 \mathrm{j}) \mathrm{N}$ and $\mathrm{m}=0.5 \mathrm{~kg}$,

ANSWER: $(6 \mathrm{i}-12 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2} \quad[(3 \mathrm{i}-4 \mathrm{j})+(-5 \mathrm{i}+\mathrm{j})+(5 \mathrm{i}-3 \mathrm{j})=(3 \mathrm{i}-6 \mathrm{j})=0.5 \mathrm{a}, \mathrm{a}=$ $\left.2(3 \mathrm{i}-6 \mathrm{j})=(6 \mathrm{i}-12 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2}\right]$
2. $(4 i-2 j) N,(2 i+3 j) N,(-3 i+4 j) N$ and $m=0.2 k g$

ANSWER: $(15 \mathrm{i}+25 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2} \quad[(4 \mathrm{i}-2 \mathrm{j})+(2 \mathrm{i}+3 \mathrm{j})+(-3 \mathrm{i}+4 \mathrm{j})=$ $\left.(3 \mathrm{i}+5 \mathrm{j})=0.2 \mathrm{a}, \mathrm{a}=5(3 \mathrm{i}+5 \mathrm{j})=15 \mathrm{i}+25 \mathrm{j} \mathrm{m} / \mathrm{s}^{2}\right]$
3. $(5 \mathbf{i}-7 \mathbf{j}) \mathrm{N},(3 \mathrm{i}+\mathrm{j}) \mathrm{N}+(\mathrm{i}-\mathbf{3} \mathbf{j}) \mathrm{N}$, and $\mathrm{m}=0.3 \mathrm{~kg}$

ANSWER: $(30 \mathrm{i}-30 \mathrm{j}) \mathrm{m} / \mathrm{s}^{2} \quad[(5 \mathrm{i}-7 \mathrm{j})+(3 \mathrm{i}+\mathrm{j})+(\mathrm{i}-3 \mathrm{j})=(9 \mathrm{i}-9 \mathrm{j})=0.3 \mathrm{a}$, $\left.a=10(9 i-9 j) / 3=(30 i-30 j) \mathrm{m} / \mathrm{s}^{2}\right]$

1. Find the solution set of the equation $|x|=-x$
(Read as 'absolute value of $x=-x$ ')
ANSWER: $\{\mathrm{x}: \mathrm{x} \leq 0\}$
2. A committee of 3 is to be formed from 3 men and 3 women. In how ways can this be done if there are 2 women and 1 man on the committee

ANSWER: 9

$\left[3 \mathrm{C}_{2} \times 3 \mathrm{C}_{1}=3 \times 3=9\right.$]
3. Describe the set of points (x, y) such that $4<x^{2}+y^{2}<9$

ANSWER: Region between 2 concentric circles with center at the origin and having radii 2 and 3.
\mathbf{u} and \mathbf{v} are two non-zero vectors and θ is the angle between them. What can you deduce about θ given that

1. $\mathbf{u} \cdot \mathbf{v}=0$ (scalar product of u and v is zero)

ANSWER: θ is a right angle, or $\theta=90^{\circ}$.
2. $u . v>0$ (scalar product of u and v is positive)

ANSWER: θ is an acute angle.
3. $u . v<0$ (scalar product of u and v is negative)

ANSWER: θ is an obtuse angle.

Solve the logarithmic equation for real x .

1. $\log _{2} \mathrm{x}+\log _{2}(\mathrm{x}+2)=\log _{2}(\mathrm{x}+6)$

ANSWER: $\mathrm{x}=2$
$\left[x(x+2)=x+6, x^{2}+x-6=(x+3)(x-2)=0, x=2\right]$
2. $\log _{3} x+\log _{3}(x-8)=2$

ANSWER: $\mathrm{x}=9$
$\left[\mathrm{x}(\mathrm{x}-8) \mathrm{H}^{2}, \mathrm{x}^{2}-8 \mathrm{x}=9, \mathrm{x}^{2}-8 \mathrm{x}-9=(\mathrm{x}-9)(\mathrm{x}+1)=0, \mathrm{x}=9\right]$
3. $\log x+\log (x-3)=1$

ANSWER: $\mathrm{x}=5$

$\left[x(x-3)=10, x^{2}-3 x-10=(x-5)(x+2)=0, x=5\right]$
Evaluate the given limit

1. $\underset{x \rightarrow-1}{\operatorname{Lim}} \frac{\left(3 x^{2}+4 x+1\right)}{(x+1)}$

ANSWER: -2

$\left[\left(3 x^{2}+4 x+1\right) /(x+1)=(3 x+1)(x+1) /(x+1)=3 x+1\right.$, Limit $=-3+1$
$=-2$]
2. $\operatorname{Lim}_{x \rightarrow 1} \frac{\left(3 x^{2}-2 x-1\right)}{(x-1)}$

ANSWER: 4
$\left[\left(3 x^{2}-2 x-1\right) /(x-1)=(3 x+1)(x-1) /(x-1)=(3 x+1)\right.$, Limit $\left.=3+1=4\right]$
3. $\operatorname{Lim}_{x \rightarrow 3} \frac{\left(2 x^{2}-5 x-3\right)}{(x-3)}$

ANSWER: 7

$\left[\left(2 x^{2}-5 x-3\right) /(x-3)=(2 x+1)(x-3) /(x-3)=2 x+1\right.$, Limit $\left.=2(3)+1=7\right]$

Find the equation of the line passing through the point $\mathrm{A}(2,-2)$ and which is

1. perpendicular to the line through the points $\mathrm{B}(-1,2)$ and $\mathrm{C}(2,1)$

ANSWER: $\mathrm{y}=3 \mathrm{x}-8$

[$\mathrm{m}_{\mathrm{bc}}=-1 / 3$, perpendicular line $\mathrm{m}=3, \mathrm{y}+2=3(\mathrm{x}-2), \mathrm{y}=3 \mathrm{x}-8$]
2. parallel to the line through the points $\mathrm{B}(3,1)$ and $\mathrm{C}(1,3)$
[$m_{b c}=2 /-2=-1$, parallel line $\left.m=-1,(y+2)=-1(x-2), y=-x\right]$
3. perpendicular to the line through the points $\mathrm{B}(2,3)$ and $\mathrm{C}(-3,-2)$

ANSWER: $\mathrm{y}=-\mathrm{x}$
[$m_{B C}=-5 /-5=1$, perpendicular line $\left.m=-1,(y-2)=-1(x+2), y=-x\right]$

1. Solve the equation $x^{4}=81 x^{2}$

ANSWER: $x=0, \pm 9$
[$x^{2}\left(x^{2}-81\right)=0, x=0$ or $x= \pm 9$]
2. Find the equation of the line making intercepts of -3 on the x-axis and 2 on the y-axis.

ANSWER: $\mathbf{x} /-\mathbf{3 + y} / \mathbf{2}=\mathbf{1}$, or $-\mathbf{2 x}+\mathbf{3 y}=\mathbf{6}$, or $\mathbf{y}=(\mathbf{2} / \mathbf{3}) \mathbf{x}+\mathbf{2}$
$[x /-3+y / 2=1,-2 x+3 y=6$, or $y=(2 / 3) x+2]$
3. Find the set of values of x for which the function $\mathrm{y}=\mathrm{x}^{3}-2 \mathrm{x}^{2}+\mathrm{x}-2$ is increasing.

ANSWER: $\{x: x>1$ or $x<1 / 3\}$
[$\mathrm{dy} / \mathrm{dx}=3 \mathrm{x}^{2}-4 \mathrm{x}+1=(3 \mathrm{x}-1)(\mathrm{x}-1)>0, \mathrm{x}>1$ or $\mathrm{x}<1 / 3$]

A linear transformation is given by $T:(x, y) \rightarrow(2 x+y, 5 x+3 y)$. Find the coordinates of the point $\mathrm{A}(\mathrm{x}, \mathrm{y})$ if its image under the transformation is

1. $(1,1)$

ANSWER: $(2,-3) \quad$ (Accept $x=2, y=-3)$
$[2 \mathrm{x}+\mathrm{y}=1,5 \mathrm{x}+3 \mathrm{y}=1,3(2 \mathrm{x}+\mathrm{y})-(5 \mathrm{x}+3 \mathrm{y})=3-1=2, \mathrm{x}=2, \mathrm{y}=-3]$
2. $(3,2)$

ANSWER: $(7,-11)$ (Accept $\mathrm{x}=7, \mathrm{y}=-11$)
$[2 x+y=3,5 x+3 y=2,3(2 x+y)-(5 x+3 y)=x=9-2=7, y=-11]$
3. $(-2,3)$

ANSWER: $(-9,16)$ (Accept $\mathrm{x}=-9, \mathrm{y}=16)$
$[2 x+y=-2,5 x+3 y=3,3(2 x+y)-(5 x+3 y)=3(-2)-3, x=-9, y=16]$

Find the equation of the tangent to the curve

1. $\mathrm{y}^{2}=4(\mathrm{x}+2)$ at the point $\mathrm{A}(2,4)$

ANSWER: $\mathrm{y}=1 / 2 \mathrm{x}+3$
$[2 y(d y / d x)=4, d y / d x=2 / y, m=1 / 2, y-4=1 / 2(x-2), y=1 / 2 x+3]$
2. $\mathrm{y}^{2}=8(\mathrm{x}-4)$ at $\mathrm{A}(6,4)$

ANSWER: $\mathrm{y}=\mathrm{x}-2$
$[2 y(d y / d x)=8, d y / d x=4 / y, m=1, y-4=x-6, y=x-2]$
3. $y^{2}=-4(x-2)$ at $(-2,-4)$

ANSWER: $\mathrm{y}=1 / 2 \mathrm{x}-3$
$[2 y(d y / d x)=-4, d y / d x=-2 / y, m=1 / 2, y+4=1 / 2(x+2), y=1 / 2 x-3]$

1. Find the equation of the locus of the point $P(x, y)$ given that the vectors
$\mathbf{a}=(x+2) \mathbf{i}-4 j$ and $b=4 \mathbf{i}+(y-2) \mathbf{j}$ are perpendicular.
ANSWER: $\mathbf{x}-\mathbf{y + 4}=\mathbf{0}$, or $\mathbf{y}=\mathbf{x + 4}$
[a.b $=(x+2) 4-4(y-2)=0,4 x+8-4 y+8=0, x-y+4=0$, or $y=x+4]$
2. Simplify $((y / x)-(x / y)) /((1 / y)-(1 / x))$

ANSWER: - $(\mathbf{y}+\mathrm{x})$
$\left[\left(y^{2}-x^{2}\right) /(x-y)=(y-x)(y+x) /(x-y)=-(y+x)\right]$
3. Rationalize the denominator of $\sqrt{10} /(\sqrt{5}-2)$ and simplify.

ANSWER: $5 \sqrt{2}+2 \sqrt{10}$
$[\sqrt{ } 10(\sqrt{5}+2) /(5-4)=5 \sqrt{2}+2 \sqrt{10}]$

Solve the equation for x

1. $\log \left(x^{2}-15 x\right)=2$

ANSWER: $x=20,-5$
$\left[\mathrm{x}^{2}-15 \mathrm{x}=100, \mathrm{x}^{2}-15 \mathrm{x}-100=(\mathrm{x}-20)(\mathrm{x}+5)=0, \mathrm{x}=20,-5\right]$
2. $\log _{3}\left(\mathrm{x}^{2}+6 \mathrm{x}\right)=3$

ANSWER: $x=3,-9$
$\left[x^{2}+6 x=27, x^{2}+6 x-27=(x+9)(x-3)=0, x=3,-9\right]$
3. $\log _{5}\left(x^{2}+24 x\right)=2$,

ANSWER: $x=-25,1$
$\left[\mathrm{x}^{2}+24 \mathrm{x}=25, \mathrm{x}^{2}+24 \mathrm{x}-25=(\mathrm{x}+25)(\mathrm{x}-1)=0, \mathrm{x}=1,-25\right]$
n is a positive integer. Solve for n from the equation

1. $\mathrm{nC}_{2}=36 \quad($ read as ' n combination 2 ' $=36$)

ANSWER: $\mathrm{n}=9$
$\left[\mathrm{n}(\mathrm{n}-1) / 2=36, \mathrm{n}^{2}-\mathrm{n}-72=(\mathrm{n}-9)(\mathrm{n}+8)=0, \mathrm{n}=9\right]$
2. $(n+1) C_{2}=78$

ANSWER: $\mathrm{n}=12$
$\left[(\mathrm{n}+1) \mathrm{n} / 2=(78), \mathrm{n}^{2}+\mathrm{n}-156=(\mathrm{n}+13)(\mathrm{n}-12)=0, \mathrm{n}=12\right]$
3. $(n-1) C_{2}=45$

ANSWER: $\mathrm{n}=11$

$\left[(n-1)(n-2) / 2=45, n^{2}-3 n+2=90, n^{2}-3 n-88=(n-11)(n+8)=0\right.$, $\mathrm{n}=11$]

1. A stone is projected vertically up with velocity $30 \mathrm{~m} / \mathrm{s}$. Find the maximum height reached from the point of projection. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

ANSWER: 45 m

$\left[v=u-g t=30-10 t=0, t=3, s=u t-1 / 2 g t^{2}=30(3)-1 / 2(10) 3^{2}=90-45=45 \mathrm{~m}\right]$
2. Express the vector $\mathbf{a}=\mathbf{- 4 i}-\mathbf{4} \mathbf{j}$ as a bearing

ANSWER: $\left(4 \sqrt{2}, 225^{\circ}\right)$
$\left[|a|=\sqrt{ }(16+16)=4 \sqrt{2}, \tan \theta=-1\right.$ in $3^{\text {rd }}$ quadrant, $\left.\theta=225^{\circ},\left(4 \sqrt{2}, 225^{\circ}\right)\right]$
3. Find the coordinates of the center of the circle $3 x^{2}+3 y^{2}+7 x+5 y=15$

ANSWER: (-7/6, -5/6)
$\left[x^{2}+y^{2}+(7 / 3) x+(5 / 3) y=5\right.$, hence center is $\left.(-7 / 6,-5 / 6)\right]$

Find the coordinates of the vertex of the given quadratic curve.

1. $y=x^{2}-6 x+7$

ANSWER: $(3,-2)$
$\left[x^{2}-6 x+9+(7-9)=(x-3)^{2}-2\right.$, vertex $\left.=(3,-2)\right]$
2. $y=x^{2}+8 x-3$

ANSWER: $(-4,-19)$
$\left[\mathrm{x}^{2}+8 \mathrm{x}+16+(-3-16)=(\mathrm{x}+4)^{2}-19\right.$, vertex $\left.=(-4,-19)\right]$
3. $y=2 x^{2}+4 x-5$

ANSWER: $(-1,-7)$
$\left[2\left(x^{2}+2 x+1\right)-5-2=2(x+1)^{2}-7\right.$, verte $\left.x=(-1,-7)\right]$

Find the value of n given that

1. ... $123_{\mathrm{n}}=38_{10}$

ANSWER: $\mathrm{n}=5$
$\left[\mathrm{n}^{2}+2 \mathrm{n}+3=38, \mathrm{n}^{2}+2 \mathrm{n}-35=(\mathrm{n}+7)(\mathrm{n}-5)=0, \mathrm{n}=5\right]$
2. $132_{\mathrm{n}}=72_{10}$

ANSWER: $\mathrm{n}=7$
$\left[\mathrm{n}^{2}+3 \mathrm{n}+2=72, \mathrm{n}^{2}+3 \mathrm{n}-70=(\mathrm{n}+10)(\mathrm{n}-7)=0, \mathrm{n}=7\right]$
3. $142_{\mathrm{n}}=98_{10}$

ANSWER: $\mathrm{n}=8$

$\left[\mathrm{n}^{2}+4 \mathrm{n}+2=98, \mathrm{n}^{2}+4 \mathrm{n}-96=(\mathrm{n}+12)(\mathrm{n}-8)=0, \mathrm{n}=8\right]$

1. Find $d y / d x$ given $2 x^{2}-x y+2 y^{2}=10$

ANSWER: $d y / d x=(4 x-y) /(x-4 y)$ or $(y-4 x) /(4 y-x)$
$[4 x-y-x(d y / d x)+4 y(d y / d x)=0,4 x-y=(x-4 y)(d y / d x), d y / d x=(4 x-y) /(x-4 y)]$
2. Triangle $A B C$ has sides $a=5, b=7, c=8$. Find the value of $\cos A$

ANSWER: 11/14

$\left[\cos A=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c=(49+64-25) / 2(7) 8=88 / 8(14)=11 / 14\right]$
3. Find the maximum value of the expression $12 \cos x-8 \sin x$

ANSWER: $4 \sqrt{13}$
$[\sqrt{ }(144+64)=\sqrt{208}=\sqrt{ }(16 \times 13)=4 \sqrt{13}$

Find the domain of the given function

1. $f(x)=\sqrt{ }(x+3) / \sqrt{(3-x)}$

ANSWER: $\{\mathrm{x}:-3 \leq \mathrm{x}<3\}$
$[(x+3) \geq 0, x \geq-3$ and $(3-x)>0,3>x, x<3$, hence $\{x:-3 \leq x<3\}]$
2. $g(x)=\sqrt{(}(x+2) / \sqrt[3]{(x-2)}$

ANSWER: $\{x: x \geq-2, x \neq 2\} \quad[\sqrt[3]{(x-2)}$ is defined for all real x, but as a denominator, $x \neq 2, \sqrt{(x+2)}$ is defined for $x \geq-2$, hence $\{x: x \geq-2, x \neq 2\}]$
3. $h(x)=\sqrt{ }(x-1) \cdot \sqrt{ }(5-x)$

ANSWER: $\{x: 1 \leq x \leq 5\} \quad$ [domain of $\sqrt{ }(x-1)$ is $x \geq 1$, and domain of $\sqrt{ }(5-x)$ is x ≤ 5, hence $\{x: 1 \leq x \leq 5\}$]

Find the inverse of the exponential function

1. $y=5^{(x+1)}$

ANSWER: $\mathrm{y}=\log _{5} \mathrm{x}-1$, or $\mathrm{y}=\log _{5}(\mathrm{x} / 5)$
$\left[x=5(y+1), y+1=\log _{5} x, y=\log _{5} x-1\right.$, or $\left.y=\log _{5}(x / 5)\right]$
2. $y=3^{-x}$

ANSWER: $y=-\log _{3} x$, or $y=\log _{3}(1 / x)$
$\left[x=3^{-y},-y=\log _{3} x, y=-\log _{3} x\right.$ or $\left.y=\log _{3}(1 / x)\right]$
3. $y=4^{2 x}$

ANSWER: $\mathrm{y}=1 / 2 \log _{4} \mathrm{x}$, or $\mathrm{y}=\log _{4} \sqrt{\mathrm{x}}$
$\left[\mathrm{x}=44^{2 \mathrm{y}}, 2 \mathrm{y}=\log _{4 \mathrm{X}}, \mathrm{y}=1 / 2 \log _{4} \mathrm{X}=\log _{4} \sqrt{ } \mathrm{x}\right]$

1. Find the coordinates of the turning points of the curve $y=2 x^{3}-3 x^{2}+5$

ANSWER: $(0,5),(1,4)$
$\left[d y / d x=6 x^{2}-6 x=6 x(x-1)=0, x=0,1\right.$, for $x=0, y=5,(0,5)$,
for $x=1, y=2-3+5=4,(1,4)$]
2. Solve the equation $\sin ^{2} \mathrm{x}-\cos ^{2} \mathrm{x}=1$ for $0<\mathrm{x}<\pi$

ANSWER: $\mathrm{x}=\pi / 2$
$[-\cos 2 x=1, \cos 2 x=-1,2 x=\pi, x=\pi / 2]$
3. Evaluate $\left(\log _{2} 36\right)\left(\log _{2} 125\right) /\left(\log _{2} 25\right)\left(\log _{2} 216\right)$

ANSWER: 1

$\left[\left(2 \log _{2} 6\right)\left(3 \log _{2} 5\right) /\left(2 \log _{2} 5\right)\left(3 \log _{2} 6\right)=2(3) / 2(3)=6 / 6=1\right]$

Given that $\sin x=1 / 2$ and x is obtuse, evaluate and simplify

1. $1 /(1+\cos \mathrm{x})$

ANSWER: $4+2 \sqrt{3}$
$[\sin x=1 / 2, x=150, \cos 150=-\cos 30=-\sqrt{3} / 2,1 /(1+\cos x)=1 /(1-\sqrt{3} / 2)=$ $2 /(2-\sqrt{3})=2(2+\sqrt{3})=4+2 \sqrt{3}]$
2. $1 /(1+\tan x)$

ANSWER: $(3+\sqrt{3}) / 2$
$[\sin x=1 / 2, x=150, \tan 150=\tan (-30)=-\tan 30=-1 / \sqrt{3}, 1 /(1+\tan x)=1 /(1-1 / \sqrt{3})$ $=\sqrt{3} /(\sqrt{3}-1)=\sqrt{3}(\sqrt{3}+1) / 2=(3+\sqrt{3}) / 2]$
3. $1 /(\cos x+\sin x)$

ANSWER: $-(1+\sqrt{3})$
$[\sin x=1 / 2, x=150, \cos 150=-\sqrt{3} / 2,1 /(\sin x+\cos x)=1 /(1 / 2-\sqrt{3} / 2)=2 /(1-\sqrt{3})=2(1+$ $\sqrt{3}) /-2=-(1+\sqrt{3})]$

Find the degree measures of the interior angles of a pentagon if

1. the exterior angles are in the ratio $2: 3: 3: 5: 5$

ANSWER: $140^{\circ}, 120^{\circ}, 120^{\circ}, 80^{\circ}, 80^{\circ}$

$[2 \mathrm{x}+3 \mathrm{x}+3 \mathrm{x}+5 \mathrm{x}+5 \mathrm{x}=18 \mathrm{x}=360, \mathrm{x}=20$, exterior angles are $40,60,60,100$, 100 , interior angles are $140,120,120,80,80$]
2. the exterior angles are in the ratio $4: 5: 5: 8: 8$

ANSWER: $132^{\circ}, 120^{\circ}, 120^{\circ}, 84^{\circ}, 84^{\circ}$

$[4 \mathrm{x}+5 \mathrm{x}+5 \mathrm{x}+8 \mathrm{x}+8 \mathrm{x}=30 \mathrm{x}=360, \mathrm{x}=12$, exterior angles are $48,60,60,96,96$, interior angles are 132, 120, 120, 84, 84]
3. the exterior angles are in the ratio $1: 2: 3: 4: 5$

ANSWER: $156^{\circ}, 132^{\circ}, 108^{\circ}, 84^{\circ}, 60^{\circ}$

$[x+2 x+3 x+4 x+5 x=15 x=360, x=24$, exterior angles are $24,48,72,96,120$, interior angles are $156,132,108,84,60$]

1. Find the inverse of the function $f(x)=(3 x+2) /(2 x-3)$

ANSWER: $\left.\mathrm{f}^{-1} \mathrm{x}\right)=(3 \mathrm{x}+2) /(2 \mathrm{x}-3)$
$[y=(3 x+2) /(2 x-3), x=(3 y+2) /(2 y-3), x(2 y-3)=3 y+2, y(2 x-3)=3 x+2$
$\left.y=(3 x+2) /(2 x-3)=f^{-1}(x)=(3 x+2) /(2 x-3)\right]$
2. If 2 and 3 are the roots of the equation $x^{2}+b x+c=0$, evaluate $b^{2}+c^{2}$.

ANSWER: 61

$\left[b=-(2+3)=-5, c=2(3)=6, b^{2}+c^{2}=25+36=61\right]$
3. Solve for x from the equation $(2 / 3)^{x}=(27 / 8)^{4 / 3}$

ANSWER: $\mathrm{x}=-\mathbf{4}$

$\left[(2 / 3)^{x}=(3 / 2)^{4}=(2 / 3)^{-4}, x=-4\right]$

Factorise completely the cubic expression

1. $8 x^{3}+64$

ANSWER: $8(x+2)\left(x^{2}-2 x+4\right)$
$\left[8\left(x^{3}+8\right)=8(x+2)\left(x^{2}-2 x+4\right)\right]$
2. $250 x^{3}-54 y^{3}$

ANSWER: $2(5 x-3 y)\left(25 x^{2}+15 x y+9 y^{2}\right)$
$\left[2\left(125 x^{3}-27 y^{3}\right)=2\left((5 x)^{3}-(3 y)^{3}\right)=2(5 x-3 y)\left(25 x^{2}+15 x y+9 y^{2}\right)\right]$
3. $64 x^{3}+27 y^{3}$

ANSWER: $(4 x+3 y)\left(16 x^{2}-12 x y+9 y^{2}\right)$
$\left[(4 x)^{3}+(3 y)^{3}=(4 x+3 y)\left(16 x^{2}-12 x y+9 y^{2}\right)\right]$

Two events A and B are such that $P(A)=0.5$ and $P(B)=0.8$. Find

1. $P(A \cup B)$ if A and B are independent,

ANSWER: 0.9
$[\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.5(0.8)=0.4, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.5+0.8-0.4=0.9]$
2. $P(A \cap B)$ if $P(A \cup B)=0.95$,

ANSWER: 0.45
$[P(A \cap B)=0.5+0.8-0.95=1.4-0.95=0.45]$
3. $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$ if $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.48$

ANSWER: 0.82
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.5+0.8-0.48=0.82]$

1. The sum S_{n} of a sequence is given by $S_{n}=n^{2}-3 n+2$. Find the fourth term of the sequence.

ANSWER: $\mathrm{U}_{4}=4$
$\left[U_{4}=S_{4}-S_{3}=(16-12+2)-(9-9+2)=6-2=4\right]$
2. If $y=\left(x^{2}+2 x\right)^{5}$, find $d y / d x$

ANSWER: $d y / d x=10(x+1)\left(x^{2}+2 x\right)^{4}$
$\left[d y / d x=5(2 x+2)\left(x^{2}+2 x\right)^{4}=10(x+1)\left(x^{2}+2 x\right)^{4}\right.$
3. If the magnitude of the vector $\mathbf{a}=\mathbf{5 i}+\mathbf{j} \mathbf{j}$ is 13 , find the value of x.

ANSWER: $x= \pm 12$
$\left[25+x^{2}=169, x^{2}=169-25=144, x= \pm 12\right]$

Solve the equation for x. You may leave answer as a logarithm

1. $2\left(4^{2 x}\right)+4^{x}-10=0$

ANSWER: $\mathrm{x}=\log _{4} \mathbf{2}$, or $\log 2 / \log 4$ or $\mathbf{1 / 2}$
$\left[2\left(4^{x}\right)^{2}+4^{x}-10=0\right.$. Let $y=4^{x}, 2 y^{2}+y-10=(2 y+5)(y-2)=0,4^{x}=2, x=\log _{4} 2$, or $x=$ $\log 2 / \log 4=1 / 2]$
2. $6\left(5^{2 x}\right)+20\left(5^{x}\right)+14=0$

ANSWER: No real solution

$\left[6\left(5^{x}\right)^{2}+20\left(5^{x}\right)+14=0\right.$. Let $y=5^{x}, 6 y^{2}+20 y+14=(6 y+14)(y+1)=0$, $5^{x}=-1,-7 / 3$, no solution since 5^{x} is non-negative]
3. $3\left(7^{2 x}\right)-7^{x}-4=0$

ANSWER: $x=\log _{7}(4 / 3)$ or $x=\log (4 / 3) / \log 7$

$\left[3\left(7^{x}\right)^{2}-7^{x}-4=0\right.$. Let $y=7^{x}, 3 y^{2}-y-4=(3 y-4)(y+1)=0,7^{x}=4 / 3, x=\log _{7}(4 / 3)$ or x $=\log (4 / 3) / \log 7]$

Solve for x in the interval $0<\mathrm{x}<90^{\circ}$ the trigonometric equation:

1. $\sin 56^{\circ} \cos x+\cos 56^{\circ} \sin x=\sqrt{3} / 2$

ANSWER: $\mathrm{x}=4^{\circ}, 64^{\circ}$

$[\sin (56+x)=\sqrt{3} / 2,56+x=60,120,56+x=60, x=4,56+x=120, x=120-$ $56=64]$
2. $\cos 148^{\circ} \cos x+\sin 148^{\circ} \sin x=1 / 2$

ANSWER: $\mathrm{x}=88^{\circ}$
$[\cos (148-x)=1 / 2,148-x=60, x=148-60=88]$
3. $\sin 75^{\circ} \cos x-\cos 75^{\circ} \sin x=1 / \sqrt{ } 2$

ANSWER: $\mathrm{x}=30^{\circ}$
$[\sin (75-x)=45,135,75-x=45, x=30,75-x=135, x=75-135<0]$

1. If the term in x^{2} in the expansion of $(1+2 x)^{4}$ and that of $(1+a x)^{5}$ are the same, find the value of a^{2}.

ANSWER: $\mathrm{a}^{2}=12 / 5$
$\left[6(2 x)^{2}=10(a x)^{2}, 24=10 a^{2}, a^{2}=24 / 10=12 / 5\right]$
2. Find the equation of a line with slope $3 / 4$ and passing through the point $A(3,2)$.

ANSWER: $\mathbf{y}=(3 \mathrm{x}-1) / 4$, or $\mathbf{y}=(3 / 4) \mathbf{x}-1 / 4$, or $3 \mathrm{x}-4 \mathrm{y}=1$
$[(y-2)=(3 / 4)(x-3), y=(3 x-1) / 4$, or $3 x-4 y=1]$
3. The first 2 terms of an exponential sequence are $2-\sqrt{3}$ and $2+\sqrt{3}$ respectively. Find the common ratio r. Simplify your answer.

ANSWER: $r=7+4 \sqrt{3}$
$\left[r=(2+\sqrt{3}) /(2-\sqrt{3})=(2+\sqrt{3})^{2}=(4+3)+2(2) \sqrt{3}=7+4 \sqrt{3}\right]$

Find the amount needed for each concentration

1. A chemist needs to mix a 5% acid solution with a 10% acid solution to obtain 50 liters of an 8% acid solution.

ANSWER: 20 liters of 5\% acid solution, 30 liters of 10\% acid solution $[0.05 x+(50-x) 0.1=50(0.08), 5 x+10(50-x)=400,100=5 x, x=20]$
2. A chemist needs to mix a 30% acid solution with a 10% acid solution to obtain 50 liters of a 20% acid solution.

ANSWER: 25 liters of 30\% acid solution, 25 liters of 10\% acid solution $[0.3 x+(50-x) 0.1=50(0.2), 30 x+10(50-x)=1000,20 x=500, x=25]$
3. A lab technician mixes a 10% alcohol solution with a 25% alcohol solution to obtain 30 liters of a 20% alcohol solution.

ANSWER: 10 liters of 10% alcohol solution, 20 liters of 25% alcohol solution $[0.1 x+(30-x)(0.25)=30(0.2), 10 x+(30-x) 25=600,150=15 x, x=10]$

Solve the trigonometric equation for the interval $0<x<\pi$.

1. $\tan ^{2} \mathrm{x}=1 / 3$

ANSWER: $x=\pi / 6,5 \pi / 6$ radians

$[\tan x= \pm 1 / \sqrt{3}, \tan x=1 / \sqrt{3}, x=\pi / 6, \tan x=-1 / \sqrt{3}, x=(\pi-\pi / 6)=5 \pi / 6]$
2. $2 \sin ^{2} \mathrm{x}-\sqrt{2} \sin \mathrm{x}=0$

ANSWER: $x=\pi / 4,3 \pi / 4$ radians

$[2 \sin x(\sin x-1 / \sqrt{2})=0, \sin x=0$, no solution, $\sin x=1 / \sqrt{2}, x=\pi / 4,3 \pi / 4]$
3. $\cos ^{2} x=1 / 4$

ANSWER: $x=\pi / 3,2 \pi / 3$ radians
$[\cos x= \pm 1 / 2, \cos x=1 / 2, x=\pi / 3, \cos x=-1 / 2, x=(\pi-\pi / 3)=2 \pi / 3]$

Find a relation between x and y given that

1. $\mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=2 \mathrm{t}^{3}$

ANSWER: $y^{2}=4 x^{3}$
$\left[\mathrm{x}^{3}=\mathrm{t}^{6}, \mathrm{y}^{2}=4 \mathrm{t}^{6}, \mathrm{y}^{2} / \mathrm{x}^{3}=4 \mathrm{t}^{6} / \mathrm{t}^{6}, \mathrm{y}^{2}=4 \mathrm{x}^{3}\right]$
2. $\mathrm{x}=2 \mathrm{t}-1, \mathrm{y}=4 \mathrm{t}^{2}+2 \mathrm{t}$

ANSWER: $\mathrm{y}=(\mathrm{x}+1)^{2}+(\mathrm{x}+1)$, or $\mathrm{y}=\mathrm{x}^{2}+3 \mathrm{x}+2$
$\left[2 t=(x+1), y=(x+1)^{2}+(x+1)=x^{2}+2 x+1+x+1=x^{2}+3 x+2\right]$
3. $\mathrm{x}=1 / \mathrm{t}^{2}, \mathrm{y}=2 \mathrm{t}$

ANSWER: $\mathrm{xy}^{2}=4$, or $\mathrm{y}^{2}=4 / \mathrm{x}$
$\left[t=(y / 2), x=1 /(y / 2)^{2}=4 / y^{2}, x y^{2}=4\right.$, or $\left.y^{2}=4 / x\right]$

1. Find the equation of the perpendicular bisector of the line segment joining the origin and the point $\mathrm{A}(2,-1)$.

ANSWER: $4 \mathbf{x}-2 \mathbf{y}-5=0$, or $\mathbf{y}=2 \mathbf{x}-\mathbf{5 / 2}$
$\left[x^{2}+y^{2}=(x-2)^{2}+(y+1)^{2}, 0=-4 x+4+2 y+1,2 y-4 x+5=0\right.$ or $\left.y=2 x-5 / 2\right]$
2. Find all real solutions of the equation $x^{5}+64 x^{2}=0$

ANSWER: $\mathrm{x}=0,-4$
$\left[x^{2}\left(x^{3}+64\right)=0, x=0\right.$ or $\left.x^{3}=-64, x=-4\right]$
3. Find the solution set of the inequality $(x-2) /(x+2)<0$

ANSWER: $\{x:-2<x<2\}$

$[(x-2)(x+2)<0,-2<x<2]$

Express the given number as the difference of two squares of positive integers

1. 45

ANSWER: $7^{2}-2^{2}(49-4), 9^{2}-6^{2}(81-36), 23^{2}-22^{2}(529-484)$
$\left[a^{2}-b^{2}=(a+b)(a-b)=5 \times 9, a+b=9, a-b=5,2 a=14, a=7, b=2\right]$
Alt. $\mathrm{a}+\mathrm{b}=15, \mathrm{a}-\mathrm{b}=3,2 \mathrm{a}=18, \mathrm{a}=9, \mathrm{~b}=6, \mathrm{a}+\mathrm{b}=45, \mathrm{a}-\mathrm{b}=1,2 \mathrm{a}=46, \mathrm{a}=$ $23, b=22]$ (NB: Any one of the differences is sufficient)
2. 32

ANSWER: $6^{2}-2^{2}(36-4), 9^{2}-7^{2}(81-49)$
$\left[a^{2}-b^{2}=(a+b)(a-b)=32, a+b=8, a-b=4, a=6, b=2\right.$,
Alt. $\mathrm{a}+\mathrm{b}=16, \mathrm{a}-\mathrm{b}=2, \mathrm{a}=9, \mathrm{~b}=7$,]
3. 15

ANSWER: $4^{2}-1^{2}(16-1), 8^{2}-7^{2}(64-49)$
$\left[\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})=15=5 \times 3, \mathrm{a}+\mathrm{b}=5, \mathrm{a}-\mathrm{b}=3, \mathrm{a}=4, \mathrm{~b}=1\right.$,
Alt. $(a+b)(a-b)=15 \times 1=a+b=15, a-b=1,2 a=16, a=8, b=7]$

Find the inverse of the given logarithmic function.

1. $y=\log _{a}(x-2)$

ANSWER: $\mathrm{y}=\mathrm{a}^{\mathrm{x}}+2$
[$\mathrm{x}=\log _{\mathrm{a}}(\mathrm{y}-2), \mathrm{y}-2=\mathrm{a}^{\mathrm{x}}, \mathrm{y}=\mathrm{a}^{\mathrm{x}}+2$]
2. $y=\log _{2}(2 x+1)$

ANSWER: $\mathrm{y}=\left(2^{\mathrm{x}}-1\right) / 2$
$\left[\mathrm{x}=\log _{2}(2 \mathrm{y}+1), 2 \mathrm{y}+1=2^{\mathrm{x}}, \mathrm{y}=\left(2^{\mathrm{x}}-1\right) / 2\right]$
3. $y=2 \log _{3}(x-3)$

ANSWER: $\mathrm{y}=3^{\mathrm{x} / 2}+3$
$\left[\mathrm{x} / 2=\log _{3}(\mathrm{y}-3), \mathrm{y}-3=3^{\mathrm{x} / 2}, \mathrm{y}=3^{\mathrm{x} / 2}+3\right]$

A particle is moving in a straight line from a point O to a point A with a constant acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. The velocity at A is $30 \mathrm{~m} / \mathrm{s}$ and it takes 10 seconds from 0 to A. Find

1. the initial velocity at 0

ANSWER: $0 \mathrm{~m} / \mathrm{s}$

$[\mathrm{v}=\mathrm{u}+\mathrm{at}, \mathrm{u}=\mathrm{v}-\mathrm{at}=30-30=0]$
2. the distance from 0 to A

ANSWER: 150 m
$\left[\mathrm{v}^{2}=2 \mathrm{as}, \mathrm{s}=\mathrm{v}^{2} / 2 \mathrm{a}=30^{2} / 2(3)=900 / 6=150 \mathrm{~m}\right]$
3. the initial velocity at O if the velocity at A is $48 \mathrm{~m} / \mathrm{s}$ and it takes 12 seconds from 0 to A].

ANSWER: $12 \mathrm{~m} / \mathrm{s}$
$[\mathrm{v}=\mathrm{u}+\mathrm{at}, 48=\mathrm{u}+3(12), \mathrm{u}=48-36=12 \mathrm{~m} / \mathrm{s}]$

1. Find the remainder R when $f(x)=3 x^{3}-4 x^{2}+2 x-10$ is divided by $(x-2)$

ANSWER: $\mathrm{R}=\mathbf{2}$
$[R=f(2)=24-16+4-10=28-26=2$
2. Find the constant term in the binomial expansion of $\left(x^{3}+1 / x\right)^{8}$

ANSWER: 28

[$\left.8 C_{r X^{3}}{ }^{3}\left(x^{-1}\right)^{8-r}=8 C_{r} x^{4 r-8}, 4 r-8=0, r=2,8 C_{2}=8 \times 7 / 2=28\right]$
3. Find the values of b and c if the inequality $x^{2}+b x+c<0$ has solution set
\{x: -5 < x < 3\}
ANSWER: $\mathrm{b}=\mathbf{2 , ~} \mathrm{c}=\mathbf{- 1 5}$
$\left[(x-3)(x+5)=x^{2}+2 x-15<0, b=2, c=-15\right]$

Find the area of a rhombus having an angle of 60° if

1. a side has length 10 cm ,

ANSWER: $50 \sqrt{3} \mathrm{~cm}^{2}$
[Area $\left.=a^{2} \sin \theta=100 \sin 60=100 \sqrt{3} / 2=50 \sqrt{3} \mathrm{~cm}^{2}\right]$
2. the shorter diagonal has length 20 cm ,

ANSWER: $200 \sqrt{3} \mathrm{~cm}^{2}$

[longer diagonal $=2 \mathrm{x}, \mathrm{x}=10 \tan 60=10 \sqrt{3}$, Area $=1 / 2 \mathrm{~d}_{1} \mathrm{~d}_{2}=1 / 2(20)(20 \sqrt{3})$
$\left.=200 \sqrt{3} \mathrm{~cm}^{2}\right]$
3. the longer diagonal has length 20 cm .

ANSWER: $200 / \sqrt{3} \mathrm{~cm}^{2}$ or $200 \sqrt{3} / 3 \mathrm{~cm}^{2}$

[shorter diagonal $=2 \mathrm{x}, \mathrm{x}=10 \tan 30=10 / \sqrt{3}$, Area $=1 / 2 \mathrm{~d}_{1} \mathrm{~d}_{2}=1 / 2(20)(20 / \sqrt{3})=$ $\left.200 / \sqrt{3}=200 \sqrt{3} / 3 \mathrm{~cm}^{2}\right]$

Simplify the complex fraction

1. $(x / y-1-6 y / x) /(x / y+4+4 y / x)$

ANSWER: $(\mathrm{x}-3 \mathrm{y}) /(\mathrm{x}+2 \mathrm{y})$
$\left[\left(x^{2}-x y-6 y^{2}\right) /\left(x^{2}+4 x y+4 y^{2}\right)=(x-3 y)(x+2 y) /(x+2 y)(x+2 y)=\right.$ $(x-3 y) /(x+2 y)]$
2. $(6 /(x+3)-4 /(x-4)) /(2 /(x-4)+5 /(x+3))$

ANSWER: $(2 \mathrm{x}-36) /(7 \mathrm{x}-14)$ or $2(\mathrm{x}-18) / 7(\mathrm{x}-2)$
$[(6(x-4)-4(x+3)) /(2(x+3)+5(x-4))=(2 x-36) /(7 x-14)]$
3. $(4 /(x-3)+3 /(x+3)) /\left(3 x /\left(x^{2}-9\right)\right)$

ANSWER: $(7 \mathrm{x}+3) / 3 \mathrm{x}$
$[(4(x+3)+3(x-3)) / 3 x=((4 x+3 x)+(12-9)) / 3 x=(7 x+3) / 3 x]$
Find the values of the constants a and b given that a particle is in equilibrium under the action of the forces

1. $(3 i+5 j) N,(-7 i+2 j) N$ and $(a i+b j) N$

ANSWER: $\mathrm{a}=4, \mathrm{~b}=-7 \quad[(3 \mathrm{i}+5 \mathrm{j})+(-7 \mathrm{i}+2 \mathrm{j})+(\mathrm{ai}+\mathrm{bj})=0,3-7+\mathrm{a}=0, \mathrm{a}=$ $4,5+2+b=0, b=-7]$
2. $(-5 i+7 j) N,(9 i-8 j) N,(a i+b j) N$

ANSWER: $\mathrm{a}=-4, \mathrm{~b}=1 \quad[(-5 \mathrm{i}+7 \mathrm{j})+(9 \mathrm{i}-8 \mathrm{j})+(\mathrm{ai}+\mathrm{bj})=0,-5+9+\mathrm{a}=0, \mathrm{a}=$ $-4,7-8+b=0, b=1]$
3. $(-4 i+5 j) N,(-2 i-8 j) N,(a i+b j) N$

ANSWER: $\mathrm{a}=6, \mathrm{~b}=3 \quad[(-4 \mathrm{i}+5 \mathrm{j})+(-2 \mathrm{i}-8 \mathrm{j})+(\mathrm{ai}+\mathrm{bj})=0,-4-2+\mathrm{a}=0, \mathrm{a}=$ $6,5-8+b=0, b=3]$

1. The sides of a right-angle triangle are $x, 2 x-1$ and $2 x+1$. Find the value of x.

ANSWER: $\mathrm{x}=8$
$\left[(2 x+1)^{2}=(2 x-1)^{2}+x^{2}, 4 x^{2}+4 x+1=4 x^{2}-4 x+1+x^{2}, x^{2}-8 x=0, x=8\right]$
2. Find the second derivative of $y=2 x^{4}-3 x^{3}+15 x$.

ANSWER: $\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}=\mathbf{2 4} \mathrm{x}^{2}-18 \mathrm{x}$
[$\left.\mathrm{dy} / \mathrm{dx}=8 \mathrm{x}^{3}-9 \mathrm{x}^{2}+15, \mathrm{~d}^{2} \mathrm{y} / \mathrm{dx} \mathrm{x}^{2}=24 \mathrm{x}^{2}-18 \mathrm{x}\right]$
3. Solve the equation $\log _{7}(3 x+7)=2$

ANSWER: $x=14$
$\left[3 x+7=7^{2}=49,3 x=42, x=14\right]$

Find the solution set of the cubic inequality.

1. $(x+2)(x-3)(x-5)>0$

ANSWER: $\{x: x>5$, or $-2<x<3\}$
2. $(x-1)(x-3)(x+1)<0$

ANSWER: $\{x: x<-1$, or $1<x<3\}$
3. $(x+3)(x-2)(x+2)>0$

ANSWER: $\{x:-3<x<-2$, or $x>2\}$
In a triangle, find the length

1. of a side if the area is $80 \mathrm{~cm}^{2}$ and the altitude to that side has length 10 cm ,

ANSWER: 16 cm

$[\mathrm{A}=1 / 2 \mathrm{bh}, 80=1 / 2(\mathrm{~b}) 10, \mathrm{~b}=160 / 10=16 \mathrm{~cm}]$
2. of an altitude if the area is $120 \mathrm{~cm}^{2}$ and the side to which the altitude is drawn has length 12 cm .

ANSWER: 20 cm
$[\mathrm{A}=1 / 2 \mathrm{bh}, 120=(1 / 2)(12) \mathrm{h}, 6 \mathrm{~h}=120, \mathrm{~h}=20 \mathrm{~cm}]$
3. of a side if the area is $27 \mathrm{~cm}^{2}$ and the side is 3 cm longer than its altitude

ANSWER: 9 cm

$\left[(1 / 2) x(x-3)=27, x^{2}-3 x-54=(x-9)(x+6)=0, x=9\right]$

Find the inverse of the linear transformation

1. $T:(x, y) \rightarrow(2 x+3 y, x+2 y)$

ANSWER: $\mathrm{T}^{-1}:(\mathrm{x}, \mathrm{y}) \rightarrow(2 \mathrm{x}-3 \mathrm{y},-\mathrm{x}+2 \mathrm{y})$
$\left[A=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right), \operatorname{det} A=4-3=1, A^{-1}=\left(\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right), T^{-1}:(x, y) \rightarrow(2 x-3 y,-x+2 y)\right]$
2. $T:(x, y) \rightarrow(x+3 y, x+4 y)$

ANSWER: $\mathrm{T}^{-1}:(\mathrm{x}, \mathrm{y}) \rightarrow(4 \mathrm{x}-3 \mathrm{y},-\mathrm{x}+\mathrm{y})$
$\left[A=\left(\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right), \operatorname{det} A=4-3=1, A^{-1}=\left(\begin{array}{cc}4 & -3 \\ -1 & 1\end{array}\right), T^{-1}:(x, y) \rightarrow(4 x-3 y,-x+y)\right]$
3. $T:(x, y) \rightarrow(2 x+y, x+y)$

ANSWER: $\mathrm{T}^{-1}:(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}-\mathrm{y},-\mathrm{x}+2 \mathrm{y})$
$\left[\mathrm{A}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right), \operatorname{det} \mathrm{A}=2-1=1, \mathrm{~A}^{-1}=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right), \mathrm{T}^{-1}:(\mathrm{x}, \mathrm{y}) \rightarrow(x-y,-x+2 y)\right]$

1. Find the volume obtained by rotating the curve $y=\sqrt{x}$ about the x-axis on the interval $4 \leq x \leq 10$.

ANSWER: 42π cubic units

[Volume $=\pi \int_{4}^{10} y^{2} d x=\pi \int_{4}^{10} x d x=\pi x^{2} /\left.2\right|_{4} ^{10}=\pi(100 / 2-16 / 2)=\pi(50-8)=42 \pi$]
2. Given that $2 x+1 \leq f(x) \leq 16-x^{2}$ over an interval containing $x=3$, find $\operatorname{Lim}_{x \rightarrow 3} f(x)$.

ANSWER: 7

$\left[\operatorname{Lim}_{x \rightarrow 3}(2 x+1) \leq \operatorname{Lim}_{x \rightarrow 3} f(x) \leq \operatorname{Lim}_{x \rightarrow 3}\left(16-x^{2}\right), 7 \leq \operatorname{Lim}_{x \rightarrow 3} f(x) \leq 7\right.$, hence $\left.\operatorname{Lim}_{x \rightarrow 3} f(x)=7\right]$
3. Find the values of the constants a and b given that the inequality $x^{2}+a x+b>0$ has solution set $\{x: x<-5$, or $x>8\}$

ANSWER: $\mathbf{a}=\mathbf{- 3}, \mathbf{b}=\mathbf{- 4 0}$
$\left[(x+5)(x-8)>0, x^{2}-3 x-40>0, a=-3\right.$ and $\left.b=-40\right]$

Find the area of a segment of a circle of radius 10 cm if the angle at the center is

1. 60°

ANSWER: $50(\pi / 3-\sqrt{3} / 2) \mathrm{cm}^{2}$, or $25(2 \pi-3 \sqrt{3}) / 3 \mathrm{~cm}^{2}$
$\left[\right.$ Area $\left.=1 / 2 r^{2}(\theta-\sin \theta)=50(\pi / 3-\sqrt{3} / 2)=25(2 \pi-3 \sqrt{3}) / 3\right]$
2. 45°

ANSWER: $50(\pi / 4-1 / \sqrt{2}) \mathrm{cm}^{2}$, or $\left.25(\pi-2 \sqrt{2}) / 2 \mathrm{~cm}^{2}\right]$
$\left[\right.$ Area $\left.=1 / 2 \mathrm{r}^{2}(\theta-\sin \theta)=50(\pi / 4-1 / \sqrt{ } 2)=25(\pi-2 \sqrt{2}) / 2\right]$
3. 120°

ANSWER: $50(2 \pi / 3-\sqrt{3} / 2) \mathrm{cm}^{2}$, or $25(4 \pi-3 \sqrt{3}) / 3 \mathrm{~cm}^{2}$
$\left[\right.$ Area $\left.=1 / 2 \mathrm{r}^{2}(\theta-\sin \theta)=50(2 \pi / 3-\sqrt{3} / 2)=25(4 \pi-3 \sqrt{3}) / 3\right]$

Simplify the complex fraction

1. $\left(1+8 / x+12 / x^{2}\right) /\left(1+6 / x+8 / x^{2}\right)$

ANSWER: $(x+6) /(x+4) \quad\left[\left(x^{2}+8 x+12\right) /\left(x^{2}+6 x+8\right)=\right.$
$(x+6)(x+2) /(x+4)(x+2)=(x+6) /(x+4)]$
2. $\left(1+8 / x^{3}+15 / x^{6}\right) /\left(1+9 / x^{3}+18 / x^{6}\right)$

ANSWER: $\left(x^{3}+5\right) /\left(x^{3}+6\right) \quad\left[\left(x^{6}+8 x^{3}+15\right) /\left(x^{6}+9 x^{3}+18\right)=\right.$ $\left.\left(x^{3}+3\right)\left(x^{3}+5\right) /\left(x^{3}+3\right)\left(x^{3}+6\right)=\left(x^{3}+5\right) /\left(x^{3}+6\right)\right]$
3. $\left(1+3 / x^{2}+2 / x^{4}\right) /\left(1+4 / x^{2}+3 / x^{4}\right)$

ANSWER: $\left(x^{2}+2\right) /\left(x^{2}+3\right) \quad\left[\left(x^{4}+3 x^{2}+2\right) /\left(x^{4}+4 x^{2}+3\right)=\right.$
$\left.\left(x^{2}+1\right)\left(x^{2}+2\right) /\left(x^{2}+1\right)\left(x^{2}+3\right)=\left(x^{2}+2\right) /\left(x^{2}+3\right)\right]$

Find dy/dx from the implicit equation

1. $5 x^{2}-2 x y-3 y^{2}=5$

ANSWER: $\mathrm{dy} / \mathrm{dx}=(5 \mathrm{x}-\mathrm{y}) /(\mathrm{x}+3 \mathrm{y})$
$[10 \mathrm{x}-2 \mathrm{y}-2 \mathrm{xdy} / \mathrm{dx}-6 \mathrm{ydy} / \mathrm{dx}=0, \mathrm{dy} / \mathrm{dx}(2 \mathrm{x}+6 \mathrm{y})=10 \mathrm{x}-2 \mathrm{y}$,
$d y / d x=(5 x-y) /(x+3 y)]$
2. $3 x^{2}-3 x y+4 y^{2}=10$

ANSWER: $\mathrm{dy} / \mathrm{dx}=(6 \mathrm{x}-3 \mathrm{y}) /(3 \mathrm{x}-8 \mathrm{y})$
$[6 x-3 y-3 x d y / d x+8 y d y / d x=0,6 x-3 y=(d y / d x)(3 x-8 y)$,
$d y / d x=(6 x-3 y) /(3 x-8 y)]$
3. $2 x^{2}+5 x y-4 y^{2}=20$

ANSWER: $\mathrm{dy} / \mathrm{dx}=(4 \mathrm{x}+5 \mathrm{y}) /(8 \mathrm{y}-5 \mathrm{x})$
$[4 x+5 y+5 x(d y / d x)-8 y(d y / d x)=0,(4 x+5 y)=(d y / d x)(8 y-5 x)$.
$d y / d x=(4 x+5 y) /(8 y-5 x)]$

1. Solve the equation $\tan ^{2} x+\tan x=0$ for $-90^{\circ}<x<90^{\circ}$

ANSWER: $\mathrm{x}=\mathbf{0}^{\circ}, \mathbf{- 4 5 ^ { \circ }}$
$\left[\tan x(\tan x+1)=0, \tan x=0, x=0^{\circ}, \tan x=-1, x=-45^{\circ}\right]$
2. Find n given $121_{n}-43_{n}=33_{10}$

ANSWER: $\mathrm{n}=\mathbf{7}$

$\left[n^{2}+2 n+1-4 n-3=n^{2}-2 n-2=33, n^{2}-2 n-35=(n-7)(n+5)=0, n=7\right]$
3. Find x given that the vectors $\mathbf{a}=4 \mathbf{i}+\mathbf{x}$ and $\mathbf{b}=\mathbf{i}-4 \mathbf{x}$ are perpendicular.

ANSWER: $x= \pm 1$

$\left[a . b=4-4 x^{2}=0, x^{2}=1, x= \pm 1\right]$

Integrate the given expression with respect to x .

1. $\left(x^{4}-x^{2}\right) /\left(x^{2}+x\right)$

ANSWER: $x^{3} / 3-x^{2} / 2+C$
$\left[\left(\mathrm{x}^{2}+\mathrm{x}\right)\left(\mathrm{x}^{2}-\mathrm{x}\right) /\left(\mathrm{x}^{2}+\mathrm{x}\right)=\mathrm{x}^{2}-\mathrm{x}, \int\left(x^{2}-x\right) d x=x^{3} / 3-x^{2} / 2+C\right]$
2. $\left(x^{4}-16\right) /\left(x^{2}+4\right)$

ANSWER: $x^{3} / 3-4 x+C$
$\left[\left(\mathrm{X}^{2}+4\right)\left(\mathrm{x}^{2}-4\right) /\left(\mathrm{x}^{2}+4\right)=\mathrm{x}^{2}-4, \int\left(x^{2}-4\right) d x=x^{3} / 3-4 x+C\right]$
3. $\left(x^{3}-1\right) /(x-1)$

ANSWER: $x^{3} / 3+x^{2} / 2+x+C$

$\left[(\mathrm{x}-1)\left(\mathrm{x}^{2}+\mathrm{x}+1\right) /(\mathrm{x}-1)=\left(\mathrm{x}^{2}+\mathrm{x}+1\right), \int\left(x^{2}+x+1\right) d x=x^{3} / 3+x^{2} / 2+x+C\right]$
A and B are acute angles such that $\sin A=4 / 5$ and $\sin B=12 / 13$. Find the value of

1. $\sin (A-B)$

ANSWER: - 16/65

$[\sin (A-B)=\sin A \cos B-\cos A \sin B=(4 / 5)(5 / 13)-(3 / 5)(12 / 13)=$ $(20-36) / 65=-16 / 65]$
2. $\cos (A+B)$

ANSWER: - 33/65
$[\cos (\mathrm{A}+\mathrm{B})=\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}=(3 / 5)(5 / 13)-(4 / 5)(12 / 13)=$
$(15-48) / 65=-33 / 65]$
3. $\cos (\mathrm{B}-\mathrm{A})$

ANSWER: 63/65
$[\cos (\mathrm{B}-\mathrm{A})=\cos \mathrm{B} \cos \mathrm{A}+\sin \mathrm{B} \sin \mathrm{A}=(5 / 13)(3 / 5)+(12 / 13)(4 / 5)=$ $(15+48) / 65=63 / 65]$

A bag contains 8 white balls, 7 black balls and 5 red balls. Two balls are drawn at random one after the other from the bag without replacement. Find the probability

1. one ball is white and one black

ANSWER: 28/95
$[\mathrm{A}=\{\mathrm{WB}, \mathrm{BW}\}, \mathrm{P}(\mathrm{A})=(8 / 20)(7 / 19)+(7 / 20)(8 / 19)=28 / 95]$
2. one ball is black and one red

ANSWER: 7/38

$[\mathrm{C}=\{\mathrm{BR}, \mathrm{RB}\}, \mathrm{P}(\mathrm{C})=(7 / 20)(5 / 19)+(5 / 20)(7 / 19)=7 /(2 \times 19)=7 / 38]$
3. one ball is red and one white

ANSWER: 4/19
$[\mathrm{D}=\{\mathrm{RW}, \mathrm{WR}\}, \mathrm{P}(\mathrm{D})=(5 / 20)(8 / 19)+(8 / 20)(5 / 19)=4 / 19$

1. Find the zeros of the function $f(x)=3 x^{3}-2 x^{2}-27 x+18=0$.

ANSWER: $x= \pm 3,2 / 3$

$$
\left[x^{2}(3 x-2)-9(3 x-2)=\left(x^{2}-9\right)(3 x-2)=0, x= \pm 3,2 / 3\right]
$$

2. Simplify $(3 \sqrt{3}-4 \sqrt{2})(3 \sqrt{3}+4 \sqrt{2})$

ANSWER:-5

$\left[(3 \sqrt{3})^{2}-(4 \sqrt{2})^{2}=27-32=-5\right]$
3. If the sides of a right-angle triangle are $x, 2 x+2$ and $2 x+3$, find x.

ANSWER: $\mathrm{x}=5$

$\left[(2 x+3)^{2}=(2 x+2)^{2}+x^{2}, 4 x^{2}+12 x+9=4 x^{2}+8 x+4+x^{2}, x^{2}-4 x-5=(x-5)(x+1)=0\right.$, $x=5]$

Find the slope of the tangent to the given curve at the point A on the curve.

1. $2 x^{2}-3 x y+y^{2}=3$ at the point $A(2,1)$.
$[4 x-3 y-3 x(d y / d x)+2 y(d y / d x)=0, d y / d x=(4 x-3 y) /(3 x-2 y)=(8-3) /(6-$ 2) $=5 / 4]$
2. $x^{2}+x y+y^{2}=7$ at the point $A(1,2)$,

ANSWER: -4/5
$[2 x+y+x(d y / d x)+2 y(d y / d x)=0$, $d y / d x=-(2 x+y) /(x+2 y)=-4 / 5]$
3. $2 x^{2}-x y-y^{2}=10$ at the point $\mathrm{A}(2,-3)$.

ANSWER: -11/4

$[4 x-y-x d y / d x-2 y(d y / d x)=0$,
$(d y / d x)=(4 x-y) /(x+2 y)=(8+3) /(2-6)=-11 / 4]$
Find the coordinates of the vertex of the given quadratic curve

1. $\mathrm{y}=1+10 \mathrm{x}-\mathrm{x}^{2}$

ANSWER: $(5,26)$
$\left[-x^{2}+10 x+1=-\left(x^{2}-10 x\right)+1=-(x-5)^{2}+25+1\right.$, vertex $\left.=(5,26)\right]$
2. $y=5-12 x-x^{2}$

ANSWER: $(-6,41)$

$\left[-x^{2}-12 x+5=-\left(x^{2}+12 x+36\right)+5+36=-(x+6)^{2}+41\right.$, vertex $\left.=(-6,41)\right]$
3. $y=-20+8 x-x^{2}$

ANSWER: (4, -4)
$\left[-\left(x^{2}-8 x+16\right)+16-20=-(x-4)^{2}-4\right.$, vertex $=(4,-4)$

A committee of 4 is to be chosen from 4 men and 4 women. In how many ways can this be done if

1. any one can be chosen,

ANSWER: 70
[$8 \mathrm{C}_{4}=8 \times 7 \times 6 \times 5 / 4 \times 3 \times 2 \times 1=70$]
2. there are 2 men and 2 women on the committee,

ANSWER: 36

$\left[4 \mathrm{C}_{2} \times 4 \mathrm{C}_{2}=((4 \times 3) / 2) \times((4 \times 3) / 2)=6 \times 6=36\right]$
3. there are 3 women and 1 man on the committee?

ANSWER: 16

$\left[4 \mathrm{C}_{3} \times 4 \mathrm{C}_{1}=4 \times 4=16\right]$

1. A ball is dropped from a height 30 m above the ground. Find the speed with which it hits the ground. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ (Leave answer as a surd)

ANSWER: $10 \sqrt{6} \mathrm{~m} / \mathrm{s}$

$$
\left[v^{2}=u^{2}+2 a s=0+2(10) 30=600, v=10 \sqrt{6} \mathrm{~m} / \mathrm{s}\right]
$$

2. A binary operation $*$ is defined on the set of integers Z by $a * b=a+b-3$. Find the identity e for the operation

ANSWER: $\mathbf{e}=\mathbf{3}$
$[a * e=a+e-3=a, e-3=0, e=3]$
3. Find the inverse of the function $f(x)=3 / x+5$, defined for $x \neq 0$

ANSWER : $f^{-1}(x)=3 /(x-5)$, for $x \neq 5$
$\left[y=3 / x+5, x=3 / y+5, x y=3+5 y, y(x-5)=3, y=3 /(x-5), f^{-1}(x)=3 /(x-5)\right.$ for $\left.x \neq 5\right]$

Find the first three terms of an exponential sequence if they are represented by

1. $(x+4), x,(x-6)$

ANSWER: -8, -12, - 18
$\left[x^{2}=(x+4)(x-6)=x^{2}-2 x-24,2 x+24=0, x=-12\right.$, hence $\left.-8,-12,-18\right]$
2. $(x-4), x,(x+6)$

ANSWER: 8, 12, 18
$\left[x^{2}=(x-4)(x+6)=x^{2}+2 x-24,2 x-24=0, x=12\right.$, hence $\left.8,12,18\right]$
3. $(x+4), x,(x-2)$

ANSWER: 8, 4, 2

$\left[x^{2}=(x+4)(x-2)=x^{2}+2 x-8,2 x-8=0, x=4\right.$, hence $\left.8,4,2\right]$

Express in the form of an inequality the set of points in the $x-y$ plane

1. inside the circle with center $(2,-3)$ and radius 5 ,

ANSWER: $\left\{(x, y):(x-2)^{2}+(y+3)^{2}<25\right\}$
2. inside and on the circle with center $(-3,4)$ and radius 4 ,

ANSWER: $\left\{(x, y):(x+3)^{2}+(y-4)^{2} \leq 16\right\}$
3. outside the circle with center $(4,-2)$ and radius 2 ,

ANSWER: $\left\{(x, y):(x-4)^{2}+(y+2)^{2}>4\right\}$

Find the exact value of

1. $\sin ^{-1}(\sin (5 \pi / 3))$

ANSWER: $-\pi / 3$
$\left[\sin (5 \pi / 3)=\sin (2 \pi-\pi / 3)=\sin (-\pi / 3), \sin ^{-1}(\sin (-\pi / 3))=-\pi / 3\right]$
2. $\tan ^{-1}(\tan (5 \pi / 4))$

ANSWER: $\pi / 4$

$\left[\tan (5 \pi / 4)=\tan (\pi+\pi / 4)=\tan (\pi / 4), \tan ^{-1}(\tan \pi / 4)=\pi / 4\right]$
3. $\cos ^{-1}(\cos 4 \pi / 3)$

ANSWER: $2 \pi / 3$

$\left[\cos (4 \pi / 3)=\cos (2 \pi-2 \pi / 3)=\cos (-2 \pi / 3)=\cos (2 \pi / 3), \cos ^{-1}(\cos 2 \pi / 3)=2 \pi / 3\right]$

1. Find the cosine of the angle θ between the vectors $\mathbf{a}=\mathbf{1 2} \mathbf{i} \mathbf{- 5} \mathbf{j}$ and $\mathbf{b}=\mathbf{4 i} \mathbf{+ 3} \mathbf{j}$.

ANSWER: $\cos \theta=33 / 65$
$[\cos \theta=a \cdot b /|a||b|=(48-15) / 13(5)=33 / 65]$
2. Find the quadratic equation with roots $\sqrt{5} \pm 2$.

ANSWER: $x^{2}-2 \sqrt{5 x}+1=0$
[sum of roots $=2 \sqrt{5}$, product $=(\sqrt{5}+2)(\sqrt{5}-2)=5-4=1, x^{2}-2 \sqrt{5 x}+1=0$]
3. Expand and simplify $(1+\sqrt{3})^{3}$

ANSWER: $10+6 \sqrt{3}$
$\left[1+3 \sqrt{3}+3(\sqrt{3})^{2}+(\sqrt{3})^{3}=(1+9)+3 \sqrt{3}+3 \sqrt{3}=10+6 \sqrt{3}\right]$

Solve for x from the radical equation

1. $2 \sqrt{ }(3 x-2)=x+2$

ANSWER: $x=6,2$
$\left[4(3 x-2)=x^{2}+4 x+4, x^{2}-8 x+12=(x-6)(x-2)=0, x=2,6\right]$
2. $x-\sqrt{(} 4 x-3)=2$

ANSWER: $\mathrm{x}=7$

$\left[x-2=\sqrt{ }(4 x-3), x^{2}-4 x+4=4 x-3, x^{2}-8 x+7=(x-7)(x-1)=0, x=7\right]$
3. $\sqrt{ }\left(x^{2}+3 x-3\right)=5$

ANSWER: $\mathrm{x}=-7,4$
$\left[x^{2}+3 \mathrm{x}-3=25, \mathrm{x}^{2}+3 \mathrm{x}-28=(\mathrm{x}+7)(\mathrm{x}-4)=0, \mathrm{x}=-7,4\right]$

Given that $0^{\circ}<\mathrm{x}<180^{\circ}$, solve the trigonometric equation

1. $\tan \mathrm{x}=-\tan 36^{\circ}$

ANSWER: $\mathrm{x}=144^{\circ}$
$[\tan x=-\tan 36=\tan (180-36), x=180-36=144]$
2. $\tan \mathrm{x}=-\tan 100^{\circ}$

ANSWER: $\mathrm{x}=\mathbf{8 0}{ }^{\circ}$
$[\tan \mathrm{x}=-\tan 100=\tan (180-100), \mathrm{x}=180-100=80]$
3. $\tan \mathrm{x}=-\tan 123^{\circ}$

ANSWER: $\mathrm{x}=\mathbf{5 7}^{\circ}$
$[\tan x=-\tan 123=\tan (180-123), x=180-123=57]$

A linear transformation is defined by T: $(x, y) \rightarrow(x-2 y,-3 x+5 y)$. Find the values of x and y given that the image of the point $A(x, y)$ is the point

1. $(1,-2)$

ANSWER: $x=-1, y=-1$
$[x-2 y=1,-3 x+5 y=-2,3(x-2 y)+(-3 x+5 y)=3-2=1, y=-1, x=-1]$
2. $(2,3)$

ANSWER: $x=-16, y=-9$
$[x-2 y=2,-3 x+5 y=3,3(x-2 y)+(-3 x+5 y)=9,-y=9, y=-9, x=-16]$
3. $(-3,5)$

ANSWER: $x=5, y=4$
$[x-2 y=-3,-3 x+5 y=5,3(x-2 y)+(-3 x+5 y)=3(-3)+5=-4$,
$y=4, x=5]$

1. Evaluate and simplify $\left(\cos 30^{\circ}+\sin 60^{\circ}\right) /\left(\tan 45^{\circ}-\tan 60^{\circ}\right)$

ANSWER: $-(3+\sqrt{3}) / 2$
$[(\sqrt{3} / 2+\sqrt{3} / 2) /(1-\sqrt{3})=\sqrt{3} /(1-\sqrt{3})=\sqrt{3}(1+\sqrt{3}) /(1-3)=-(3+\sqrt{3}) / 2]$
2. Given $3 x^{2}-2 x y+y^{2}=6$ evaluate $d y / d x$ at $(1,-1)$

ANSWER: 2

$[6 x-2 y-2 x d y / d x+2 y d y / d x=0,(d y / d x)(2 x-2 y)=6 x-2 y, d y / d x=(3 x-y) /(x-y)=$ $4 / 2=2$]
3. Find the integral $\int \frac{\left(2 x^{3}-3 x^{2}+5\right)}{x^{2}} d x$

ANSWER: $\mathbf{x}^{\mathbf{2}} \mathbf{- 3 \mathbf { 3 } - \mathbf { 5 } / \mathbf { x } + \mathbf { C }}$
$\left[\int\left(2 x-3+5 / x^{2}\right) d x=x^{2}-3 x-5 / x+C\right]$

1. The sum of three consecutive even integers is at least 24 and at most 36 . List all possible values for the 3 integers.

ANSWER: $\{6,8,10\},\{8,10,12\},\{10,12,14\}$ (1 mark for each triple)
$[24 \leq(x-2)+x+(x+2) \leq 36,24 \leq 3 x \leq 36,8 \leq x \leq 12, x=8,10,12]$
2. The sum of three consecutive odd integers is at least 39 and at most 51 . List all possible values for the 3 integers.

ANSWER: $\{11,13,15\},\{13,15,17\},\{15,17,19\}$
$[39 \leq(x-2)+x+(x+2) \leq 51,39 \leq 3 x \leq 51,13 \leq x \leq 17, x=13,15,17]$
3. The sum of three consecutive integers is at least 33 and at most 39. List all possible values for the 3 integers,

ANSWER: $\{10,11,12\},\{11,12,13\},\{12,13,14\}$
$[33 \leq(x-1)+x+(x+1) \leq 39,33 \leq 3 x \leq 39,11 \leq x \leq 13, x=11,12,13]$

Factorize the cubic polynomial completely.

1. $x^{3}+x^{2}-10 x+8$

ANSWER: $(x-1)(x-2)(x+4)$
$\left[(x-1)\right.$ is a factor, $x^{3}+x^{2}-10 x+8=(x-1)\left(x^{2}+a x-8\right),(a-1) x^{2}=1 x^{2}, a=2$
$x^{2}+2 x-8=(x+4)(x-2)$, hence $\left.(x-1)(x-2)(x+4)\right]$
2. $2 x^{3}-x^{2}-7 x+6$

ANSWER: $(x-1)(x+2)(2 x-3)$
$\left[(x-1)\right.$ is a factor, $2 x^{3}-x^{2}-7 x+6=(x-1)\left(2 x^{2}+a x-6\right),(a-2) x^{2}=-1 x^{2}, a=1$
$2 x^{2}+x-6=(2 x-3)(x+2)$, hence $\left.(x-1)(x+2)(2 x-3)\right]$
3. $x^{3}-2 x^{2}-13 x-10$

ANSWER: $(x+1)(x+2)(x-5)$

$\left[(x+1)\right.$ is a factor, $x^{3}-2 x^{2}-13 x-10=(x+1)\left(x^{2}+a x-10\right),(a+1) x^{2}=-2 x^{2}, a=-3$
$x^{2}-3 x-10=(x-5)(x+2)$, hence $\left.(x+1)(x+2)(x-5)\right]$

Find the quadratic equation with integer coefficients having as one of its roots

1. $3+2 \sqrt{ } 3$

ANSWER: $\mathrm{x}^{2}-6 \mathrm{x}-3=0$
[roots are $3 \pm 2 \sqrt{3}$, sum $=6$, product $=9-12=-3$, hence $x^{2}-6 x-3=0$]
2. $4-2 \sqrt{2}$

ANSWER: $\mathrm{x}^{2}-8 \mathrm{x}+8=0$
[roots are $4 \pm 2 \sqrt{2}$, sum $=8$, product $=16-8=8$, hence $x^{2}-8 x+8=0$]
3. $-5+2 \sqrt{ } 7$

ANSWER: $x^{2}+10 \mathrm{x}-3=0 \quad$ [roots are $-5 \pm 2 \sqrt{7}$, sum $=-10$,
product $=25-28=-3$, hence $x^{2}+10 x-3=0$]

1. If $\sin x=1 / \sqrt{2}$ and $\cos x<0$, find x in the interval $0<x<2 \pi$

ANSWER: $x=3 \pi / 4$

[$\sin x>0$ and $\cos x<0$, hence x is in second quadrant, $x=3 \pi / 4$]
2. The sum of the first n terms of a series is $S_{n}=5 n^{2}-3 n$ for $n \geq 1$. Find the first three terms of the series.

ANSWER: $\mathrm{U}_{1}=2, \mathrm{U}_{2}=12, \mathrm{U}_{3}=22$
$\left[\mathrm{U}_{1}=\mathrm{S}_{1}=5-3=2, \mathrm{U}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=(20-6)-2=14-2=12, \mathrm{U}_{3}=\mathrm{S}_{3}-\mathrm{S}_{2}=(45-9)-14=\right.$ $45-23=22$]
3. In a circle, the radius is 10 cm and an arc subtends an angle of 60° at the center. Find the area of the sector formed by the arc and the relevant radii.

ANSWER: $50 \pi / 3 \mathrm{~cm}^{2}$
$\left[60^{\circ} \equiv \pi / 3\right.$ radians, $\left.A=1 / 2 r^{2} \theta=1 / 2(100) \pi / 3=50 \pi / 3 \mathrm{~cm}^{2}\right]$

Solve the trigonometric equation for x in the interval $90^{\circ}<\mathrm{x}<180^{\circ}$

1. $\sin x=\sin 37^{\circ}$

ANSWER: $\mathrm{x}=143^{\circ}$
$\left[\sin x=\sin (180-37), x=180-37=143^{\circ}\right]$
2. $\cos x=-\cos 65^{\circ}$

ANSWER: $\mathrm{x}=115^{\circ}$

$\left[-\cos 65=\cos (180-65), \cos x=\cos (180-65), x=180-65, x=115^{\circ}\right]$
3. $\tan x=-\tan 52^{\circ}$

ANSWER: $\mathrm{x}=128^{\circ}$
$\left[\tan \mathrm{x}=\tan (180-52), \mathrm{x}=180-52=128^{\circ}\right]$

Find the coordinates of the vertices of a triangle if the vertices lie on the lines with equations

1. $x+y=2, x-y=4,2 x-y=4$

ANSWER: $(3,1),(2,0),(0,-4)$
$[x+y=2, x-y=4,2 x=6, x=3, y=-1,(3,-1), x+y=2,2 x-y=4,3 x=6, x=$ $2, y=0,(2,0), x-y=4,2 x-y=4, x=0, y=-4,(0,-4)]$
2. $y=x, y=-x+2, y=2 x-4$

ANSWER: $(1,1),(4,4),(2,0)$
$[y=x, y=-x+2,2 y=2, y=1, x=1,(1,1) ; y=x, y=2 x-4, x-4=0, x=4, y=$ $4,(4,4) ; y=-x+2, y=2 x-4,-x+2=2 x-4,3 x=6, x=2, y=0,(2,0)]$
3. $x+y=6,2 x+y=6, y=2 x$

ANSWER: $(2,4),(3 / 2,3),(0,6)$
$[x+y=6$ and $y=2 x, 3 x=6, x=2, y=4,(2,4), 2 x+y=6$ and $y=2 x$, $4 x=6, x=3 / 2, y=3,(3 / 2,3), x+y=6$ and $2 x+y=6, x=0, y=6,(0,6)]$

Find values of the constants a and b given that the polynomial

1. $f(x)=a x^{3}+b x^{2}+x-4$ is exactly divisible by $(x-1)$ and $(x+1)$.

ANSWER: $\mathrm{a}=-1, \mathrm{~b}=4$
$[\mathrm{a}+\mathrm{b}+1-4=0, \mathrm{a}+\mathrm{b}=3,-\mathrm{a}+\mathrm{b}-1-4=0,-\mathrm{a}+\mathrm{b}=5,2 \mathrm{~b}=8, \mathrm{~b}=4, \mathrm{a}=-1]$
2. $f(x)=x^{3}+a x^{2}+b x-a$ has $(x-1)$ and $(x+2)$ as factors.

ANSWER: $\mathrm{a}=2, \mathrm{~b}=-1$
$[1+\mathrm{a}+\mathrm{b}-\mathrm{a}=0, \mathrm{~b}=-1,-8+4 \mathrm{a}+2-\mathrm{a}=0,3 \mathrm{a}-6=0, \mathrm{a}=2]$
3. $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+\mathrm{ax}^{2}+\mathrm{bx}-3$ is divisible by $(\mathrm{x}-1)$ and $(\mathrm{x}+1)$.

ANSWER: $\mathrm{a}=3, \mathrm{~b}=-2$
$[2+a+b-3=0, a+b=1,-2+a-b-3=0, a-b=5,2 a=6, a=3, b=-2]$

1. Under a translation, the point $(2,5)$ maps into the point $(3,2)$. Find the image of the point $(-2,3)$ under the same translation.

ANSWER: $(-1,0)$
$[u=(3,2)-(2,5)=(1,-3),(-2,3)+(1,-3)=(-1,0)]$
2. A binary operation is defined on the set of real numbers excluding -1 by $a * b=a+b+a b$. Find the identity e.
ANSWER: $\mathrm{e}=0$
$[a * e=a, a+e+a e=a, e(1+a)=0, e=0$ since $a \neq-1]$
3. State the converse of the statement 'a regular polygon is equilateral' and determine if the converse is true or not.

ANSWER: 'An equilateral polygon is regular'. Converse is false.

Find the gradient dy/dx from the implicit equatio

1. $x^{3}-x^{2} y+y^{3}=7$

ANSWER: $d y / d x=\left(3 x^{2}-2 x y\right) /\left(x^{2}-3 y^{2}\right)$
$\left[3 x^{2}-2 x y-x^{2} d y / d x+3 y^{2} d y / d x=0,(d y / d x)\left(x^{2}-3 y^{2}\right)=3 x^{2}-2 x y\right.$, $\left.d y / d x=\left(3 x^{2}-2 x y\right) /\left(x^{2}-3 y^{2}\right)\right]$
2. $2 x^{3}+x^{2} y-2 y^{3}=15$

ANSWER: $d y / d x=\left(6 x^{2}+2 x y\right) /\left(6 y^{2}-x^{2}\right)$
$\left[6 x^{2}+2 x y+x^{2}(d y / d x)-6 y^{2}(d y / d x)=0,(d y / d x)\left(6 y^{2}-x^{2}\right)=\left(6 x^{2}+2 x y\right)\right.$,
$\left.d y / d x=\left(6 x^{2}+2 x y\right) /\left(6 y^{2}-x^{2}\right)\right]$
3. $3 x^{3}-2 x^{2} y+y^{3}=20$

ANSWER: $d y / d x=\left(9 x^{2}-4 x y\right) /\left(2 x^{2}-3 y^{2}\right)$
$\left[9 x^{2}-4 x y-2 x^{2}(d y / d x)+3 y^{2}(d y / d x)=0,(d y / d x)\left(2 x^{2}-3 y^{2}\right)=9 x^{2}-4 x y\right.$ $\left.d y / d x=\left(9 x^{2}-4 x y\right) /\left(2 x^{2}-3 y^{2}\right)\right]$

Given that $\cos A=-1 / \sqrt{2}$ and A is obtuse, and $\sin B=\sqrt{3} / 2$ and B is acute, evaluate

1. $\sin (A-B)$

ANSWER: $(1+\sqrt{3}) / 2 \sqrt{2}$, or $(1+\sqrt{3}) \sqrt{2} / 4$, or $(\sqrt{2}+\sqrt{6}) / 4$
$[\sin (A-B)=\sin A \cos B-\cos A \sin B=(1 / \sqrt{2})(1 / 2)-(-1 / \sqrt{2})(\sqrt{3} / 2)=$ $(1+\sqrt{3}) / 2 \sqrt{2}]$
2. $\cos (A+B)$

ANSWER: $-(1+\sqrt{3}) / 2 \sqrt{2}$, or $-(1+\sqrt{3}) \sqrt{2} / 4$, or $-(\sqrt{2}+\sqrt{6}) / 4$
$[\cos (\mathrm{A}+\mathrm{B})=\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}=(-1 / \sqrt{ } 2)(1 / 2)-(1 / \sqrt{2})(\sqrt{3} / 2)=$ $(-1-\sqrt{3}) / 2 \sqrt{2}]$
3. $\sin (A+B)$

ANSWER: $(1-\sqrt{3}) / 2 \sqrt{2}$, or $(1-\sqrt{3}) \sqrt{2} / 4$, or $(\sqrt{2}-\sqrt{6}) / 4$
$[\sin (A+B)=\sin A \cos B+\cos A \sin B=(1 / \sqrt{2})(1 / 2)+(-1 / \sqrt{2})(\sqrt{ } 3) / 2=$ $(1-\sqrt{3}) / 2 \sqrt{2}]$

A bag contains 8 white balls, 7 black balls and 5 red balls. Three balls are drawn at random one after the other from the bag without replacement. Find the probability

1. two balls are red and one black,

ANSWER: 7/114

$[\mathrm{A}=\{\mathrm{RRB}, \mathrm{RBR}, \mathrm{BRR}\}, \mathrm{P}(\mathrm{A})=(5 / 20)(4 / 19)(7 / 18)+(5 / 20)(7 / 19)(4 / 18)+$
$(7 / 20)(5 / 19)(4 / 18)=3(7) /(19)(18)=7 / 19(6)=7 / 114]$
2. two balls are white and one red,

ANSWER: 7/57

$[\mathrm{C}=\{\mathrm{WWR}, \mathrm{WRW}, \mathrm{RWW}\}, \mathrm{P}(\mathrm{C})=(8 / 20)(7 / 19)(5 / 18)+(8 / 20)(5 / 19)(7 / 18)+$ $(5 / 20)(8 / 19)(7 / 18)=3(2)(7) /(19)(18)=7 / 19(3)=7 / 57]$
3. two balls are black and one white.

ANSWER: 14/95

[$\mathrm{D}=\{\mathrm{BBW}, \mathrm{BWB}, \mathrm{WBB}\}, \mathrm{P}(\mathrm{D})=(7 / 20)(6 / 19)(8 / 18)+(7 / 20)(8 / 19)(6 / 18)+$ $(8 / 20)(7 / 19)(6 / 18)=3(7 / 5)(2 / 9)(6 / 19)=14 / 95]$

1. Find the stationary point of $y=(2 x+1) /(x-2)$

ANSWER: NO STATIONARY POINT

[dy/dx $=(2(x-2)-1(2 x+1)) /(x-2)^{2}=-5 /(x-2)^{2} \neq 0$, no stationary point]
2. The $5^{\text {th }}$ term of an exponential sequence is 80 and the $8^{\text {th }}$ term is 640 . Find the general term U_{n}.

ANSWER: $\mathrm{U}_{\mathrm{n}}=\mathbf{5}\left(\mathbf{2}^{\mathrm{n}-1}\right)$
$\left[a r^{4}=80, a r^{7}=640, r^{3}=640 / 80=8, r=2, a=5, U_{n}=a r^{n-1}=5\left(2^{n-1}\right)\right]$
3. Two angles of a cyclic quadrilateral measure 53° and 115° respectively. Find the measures of the 2 remaining angles.

ANSWER: $\mathbf{1 2 7}^{\circ}, \mathbf{6 5}^{\circ}$

[supplement of 53° is 127°, supplement of 115° is 65°, hence $127^{\circ}, 65^{\circ}$]

Find the values of the constants a and b such that the quadratic inequality has the given solution set.

1. $\mathrm{ax}^{2}+\mathrm{bx}+2>0$ has solution set $\{\mathrm{x}:-1<\mathrm{x}<2\}$

ANSWER: $\mathrm{a}=-1, \mathrm{~b}=1$
$\left[(x+1)(x-2)=x^{2}-x-2<0,-x^{2}+x+2>0, a=-1, b=1\right]$
2. $\mathrm{ax}^{2}+\mathrm{bx}+6<0$ has solution set $\{\mathrm{x}: \mathrm{x}<-3$, or $\mathrm{x}>2\}$

ANSWER: $\mathrm{a}=-1, \mathrm{~b}=-1$
$\left[(x+3)(x-2)=x^{2}+x-6>0,-x^{2}-x+6<0, a=-1, b=-1\right]$
3. $\mathrm{ax}^{2}+\mathrm{bx}+2>0$ has solution set $\{\mathrm{x}:-1 / 2<\mathrm{x}<2\}$

ANSWER: $\mathrm{a}=-2, \mathrm{~b}=3$
$\left[(2 x+1)(x-2)=2 x^{2}-3 x-2<0,-2 x^{2}+3 x+2>0, a=-2, b=3\right]$

Find the common ratio r of an exponential sequence whose first three terms are given by

1. ... $(x+3),(x-1),(x-3)$

ANSWER: $\mathrm{r}=1 / 2$

$\left[(x-1)^{2}=(x+3)(x-3), x^{2}-2 x+1=x^{2}-9,2 x=10, x=5\right.$,
$r=(x-1) /(x+3)=(5-1) /(5+3)=4 / 8=1 / 2]$
2. $(x-2),(x+1),(x+3)$

ANSWER: $r=2 / 3$

$\left[(x+1)^{2}=(x-2)(x+3), x^{2}+2 x+1=x^{2}+x-6, x=-7\right.$,
$r=(x+1) /(x-2)=(-7+1) /(-7-2)=-6 /-9=2 / 3]$
3. $(x+1),(x+3),(x+4)$

ANSWER: $\mathrm{r}=1 / 2$
$\left[(x+3)^{2}=(x+1)(x+4), x^{2}+6 x+9=x^{2}+5 x+4, x=4-9=-5\right.$,
$r=(x+3) /(x+1)=(-5+3) /(-5+1)=-2 /-4=1 / 2]$

Find the amount invested at each rate of interest if a man invests

1. GHs60,000 partly at 9% and the remainder at 6% and receives a total interest of GHs4,800 at the end of the year,

ANSWER: GHs40,000 at 9\%, GHs20,000 at 6\%

$[0.09 x+(60,000-x)(0.06)=4,800,9 x+(60,000-x) 6=480,000$
$3 \mathrm{x}=480,000-360,000=120,000, \mathrm{x}=40,000,60,000-40,000=20,000]$
2. $\mathrm{GH} s 100,000$ partly at 10% and the remainder at 15% and receives a total interest of GHs11,500 at the end of the year

ANSWER: GHs 70,000 at 10\%, GHs 30,000 at 15\%

$[0.1 \mathrm{x}+(100,000-\mathrm{x}) 0.15=11500,15000-0.05 \mathrm{x}=11500,5 \mathrm{x}=350,000$,
$x=70,000,100,000-70,000=30,000]$
3. $\mathrm{GHs} 40,000$ partly at 12% and the remainder at 8% and receives a total interest of GHs4,000 at the end of the year.

ANSWER: GHs20,000 at 12\%, GHs20,000 at 8\%

$[0.12 x+0.08(40,000-x)=4000,12 x+8(40,000-x)=400,000$
$4 \mathrm{x}=80,000, \mathrm{x}=20,000,40,000-20,000=20,000]$

1. If $a=(x+1) /(2 x-1)$, express $(2 a+1) /(a-1)$ in terms of x.

ANSWER: $(4 x+1) /(2-x)$
$[(2(x+1)+(2 x-1)) /((x+1)-(2 x-1))=(4 x+1) /(2-x)]$
2. Find a relation between x and y given that $2 \log x-3 \log y=1$

ANSWER: $x^{2} / y^{3}=10$, or $x^{2}=10 y^{3}$, or $y^{3}=x^{2} / 10$
$\left[\log \left(x^{2} / y^{3}\right)=\log 10, x^{2} / y^{3}=10\right.$, or $x^{2}=10 y^{3}$ or $\left.y^{3}=x^{2} / 10\right]$
3. Find the domain of the function $y=\sqrt{(} 3-x)$.

ANSWER: $\{\mathrm{x}: \mathrm{x} \leq 3\}$
[function defined for $(3-x) \geq 0,3 \geq x$, or $x \leq 3$]

