Determine the number of $\mathrm{sp} ; \mathrm{sp}^{2}$; and sp^{3} hybridized carbons present in each of the following compounds if any.

1. 2-butanone

Ans: $\mathbf{S p}=\mathbf{0} ; \mathbf{s p}^{2}=1 ;$ and $\mathbf{s p}^{3}=3$
2. 2,4-pentanediol

Ans: $\mathrm{Sp}=0 ; \mathbf{s p}^{\mathbf{2}}=\mathbf{0} ;$ and $\mathrm{sp}^{3}=5$
3. 1-butyne

Ans: $\mathbf{S p}=2 ; \mathbf{s p}^{\mathbf{2}}=\mathbf{0} ;$ and $\mathrm{sp}^{\mathbf{3}}=2$
The triiodide ion $\mathrm{I}_{3}{ }^{-}$is titrated with a known concentration of thiosulfate ion, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

1. Given that the products of the reaction are I^{-}and $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$, provide a balanced equation for the reaction.

Ans: $\mathbf{I}_{3}{ }^{-}+\mathbf{2 S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathbf{3 I}^{-}+\mathbf{S}_{4} \mathrm{O}_{6}{ }^{\mathbf{2 -}}$
2. Given that the $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ solution was prepared by dissolving 7.9 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in $200 \mathrm{~cm}^{3}$ of solvent, calculate the concentration of the thiosulfate solution. Take the atomic mass of Na, S, and $O(\mathrm{~g} / \mathrm{mol})$ as 23,32 and 16 , respectively.

Ans: $\mathbf{0 . 2 5}$ moldm $^{-3}$

Molar mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=158$
$\left[\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right]=(7.9 / 158) \div 0.20=0.25 \mathrm{M}$
3. Given that, $10 \mathrm{~cm}^{3}$ of the triiodide reacted with $40 \mathrm{~cm}^{3}$ of 0.25 moldm ${ }^{-3}$ of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, determine the concentration of triiodide required if the equation of reaction is
$\mathrm{I}_{3}{ }^{-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 3 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
Ans: $\mathbf{0 . 5 0}$ moldm $^{-3}$
Moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=10 \mathrm{mmol}$
Moles of $\mathrm{I}_{3}=5 \mathrm{mmol}$ (based on equation of reaction)
$\left[\mathrm{I}_{3}{ }^{-}\right]=5 / 10=0.5 \mathrm{moldm}^{-3}$

1. The mass of 0.40 moles of compound AB_{2} is 46 g . Given that the atomic mass of element A is 45 g , determine the atomic mass of B.

Ans: $\mathbf{3 5} \mathbf{~ g} / \mathrm{mol}$

Molecular mass of compound $=46 / 0.4=115$
Mass of element $\mathrm{B}=(115-45) / 2=35 \mathrm{~g} / \mathrm{mol}$
2. Determine the sum of the stoichiometric coefficients of all reactants and products in a balanced equation of the reaction: $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$

Ans: 9

$2 \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
3. Given that the atomic mass ($\mathrm{g} / \mathrm{mol}$) of chlorine and oxygen are 35 and 16 respectively, which of the following oxides of chlorine is most likely to have a percentage chorine and oxygen of approximate ratio 1:1?
$\mathrm{ClO} ; \mathrm{ClO}_{3} ; \mathrm{ClO}_{4} ; \mathrm{Cl}_{2} \mathrm{O}_{3} ; \mathrm{Cl}_{2} \mathrm{O}_{5} ; \mathrm{Cl}_{2} \mathrm{O}_{6} ;$ and $\mathrm{Cl}_{2} \mathrm{O}_{7}$.

Ans: $\mathrm{Cl}_{2} \mathrm{O}_{5}$

1. Which of CHF_{3} and CHCl_{3} is more acidic? Explain

Ans: $\mathbf{C H C l}_{3}$

Reason: Conjugate ion formed $\left(\mathrm{CCl}_{3}{ }^{-}\right)$is more stable (being stabilized by resonance due to the presence of d-orbital)
2. Which of cyclohexanol and phenol is more acidic and why?

Ans: Phenol
Reason: The conjugate ion (phenoxide) is more stable, being stabilised by resonance.
3. Which of 2-fluorobutanoic acid and 2-chlorobutanoic acid is more acidic and why?

Ans: 2-fluorobutanoic acid

Reason: More stable conjugate base due to the stronger inductive (electron-withdrawing) effect (because of higher electronegativity of fluorine).

1. The half-life of a radioactive nuclide is 24 minutes. How long will it take for 87.5% of the nuclide to decay?

Ans: 72 minutes

Amount remaining $=12.5 \%=0.125=1 / 8=3$ half-lives; \quad Hence $24 \times 3=72$
2. After 60 days, only 0.600 g of a radionuclide with a half-life of 12 days remains. Determine the initial mass of the radionuclide sample.

Ans: 19.2 g

60 days represents 5 half-lives. \quad Mass $=0.600 \times 32=19.2 \mathrm{~g}$
3. A 41.6 g sample of radionuclide decays to 0.65 g in 300 minutes. What is the half-life of this radionuclide?

Ans: 50 minutes

$0.65 / 41.6=1 / 64=6$ half-lives. Hence 300/6 $=50$ minutes

1. An organic compound containing carbon, hydrogen and oxygen has a molecular mass of 180 $\mathrm{g} / \mathrm{mol}$. Given that the total mass of carbon is 108 g , give the molecular formula of the compound. Take the atomic mass of C, H and $\mathrm{O}(\mathrm{g} / \mathrm{mol})$ as $12 ; 1.0$ and 16 , respectively.

Ans: $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$

(108 g means 12 C atoms present; only appropriate way of distributing the remaining mass of 72 g is to have a maximum of 4 O atoms)
2. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$
Ans: 15
$4 \mathrm{NH}_{3}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
3. How many unpaired electrons are present in the element Cobalt with atomic number 27?

Ans: Three (3) unpaired electrons

State one major difference between cracking and reforming as occurs in the petroleum industry

Ans: \quad Cracking	Reforming

1. A sample of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ weighs 8.80 g . Determine the mass of calcium present in the sample given that atomic mass of Ca, C and $\mathrm{O}(\mathrm{g} / \mathrm{mol})$ as $40.0,12.0,16.0$, respectively.

Ans: $\mathbf{2 . 7 5}$ g
Molar mass $=128 \mathrm{~g} / \mathrm{mol}$
Mass of $\mathrm{Ca}=40 / 128 \times 8.8=2.75 \mathrm{~g}$
2. A student dissolves 3.0 g of a sample containing silver in solution using an acid. She then precipitates out 4.7 g silver bromide, AgBr . What percentage of silver is present in the sample? Take the atomic mass $(\mathrm{g} / \mathrm{mol})$ of Ag and Br as 108 and 80 , respectively.

Ans: 90\%

Molar mass of $\mathrm{AgBr}=188 \mathrm{~g} / \mathrm{mol}$
Mass of $\mathrm{Ag}=108 / 188 \times 4.7=2.7$
$\% \mathrm{Ag}=2.7 / 3 \times 100=90 \%$
3. The percentage of calcium carbonate in eggshell is 28%. Determine the mass of calcium in 500 g of eggshell. Take the atomic mass $(\mathrm{g} / \mathrm{mol})$ of Ca, C and O as 40,12 and 16 , respectively.

Ans: 56 g

Molar mass of $\mathrm{CaCO}_{3}=100 \mathrm{~g} / \mathrm{mol}$
Mass of $\mathrm{CaCO}_{3}=28 / 100 \times 500=140 \mathrm{~g}$
Mass of $\mathrm{Ca}=40 / 100 \times 140=56 \mathrm{~g}$

1. The specific gravity of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 1.80 . What mass of acid will have a volume of $800 \mathrm{~cm}^{3}$ assuming the density of water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$?
Ans: 1440 g
Density, $\rho=1.8 \times 1.0=1.8 \mathrm{~g} / \mathrm{cm}^{3}$
Mass $=1.8 \times 800=1440 \mathrm{~g}$
2. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$

Ans: 19
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
3. What is the total number of orbitals (in a shell) present in an atom with principal quantum number 4 ?

Ans: 16 (n^{2})

1. How many moles of an ideal gas are present in $2.5 \mathrm{dm}^{3}$ of gas at a temperature of $27^{\circ} \mathrm{C}$ and 100 kPa ? Take the molar gas constant to be $8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Ans: $\mathbf{0 . 1 0} \mathbf{~ m o l}$

$\mathrm{PV}=\mathrm{nRT}$
Mole of gas $=\mathrm{PV} / \mathrm{RT}=100000 \times 0.0025 /(8.3 \times 300)=0.10 \mathrm{~mol}$
2. What is the volume in dm^{3} occupied by 20 moles of an ideal gas at a temperature of $127^{\circ} \mathrm{C}$ and a pressure of 830 kPa ? Take the molar gas constant to be $8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Ans: $\mathbf{8 0} \mathbf{d m}^{3}$
$P V=n R T$
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}=(20 \times 8.3 \times 400) / 830=80 \mathrm{dm}^{3}$
3. 10.0 moles of an ideal gas is held at a pressure of 500 kPa in a $166 \mathrm{dm}^{3}$ container. Determine the temperature of the gas. Take the molar gas constant to be $8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-}$

Ans: 1000 K

$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{T}=\mathrm{PV} / \mathrm{nR}=(500 \mathrm{kPa} \times 166) / 10.0 \times 8.3=1000 \mathrm{~K}$

1. Determine the mass of magnesium carbonate heated if 2.0 g of magnesium oxide is formed. Take the atomic mass of magnesium, carbon, and oxygen as 24,12 and 16 , respectively.

Ans: $\mathbf{4 . 1} \mathbf{g}$

$\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
$\mathrm{n}(\mathrm{MgO})=2.0 / 40=0.050$
Mass of $\mathrm{MgCO}_{3}=0.050 \times 84=4.1$
2. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{B}_{2} \mathrm{Br}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{~B}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{HBr}$

Ans: 15

$\mathrm{B}_{2} \mathrm{Br}_{6}+6 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{~B}\left(\mathrm{NO}_{3}\right)_{3}+6 \mathrm{HBr}$
3. How many electrons are present in quantum number 3 of Calcium $2+\operatorname{ion}\left(\mathrm{Ca}^{2+}\right)$?

Ans: 8

$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} \mathrm{sp}^{6} 3 \mathrm{~s}^{\mathbf{2}} \mathbf{3} \mathrm{p}^{6}$
Provide the products formed and a balanced reaction equation for the following decompositions:

1. Heating of copper (II) oxide

Ans: $\mathbf{2} \mathbf{C u O} \rightarrow \mathbf{2 C u}+\mathbf{O}_{2}$

2. Heating of magnesium hydroxide

Ans: $\mathbf{M g}(\mathbf{O H})_{2} \rightarrow \mathbf{M g O}+\mathbf{H}_{2} \mathrm{O}$

3. Heating of sodium trixochlorate (V)

Ans: $\mathbf{2} \mathbf{N a C l O}_{3} \rightarrow \mathbf{2} \mathbf{N a C l}+\mathbf{3} \mathbf{O}_{2}$

1. You are given the following reactions with their respective enthalpies:
$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}$ (g)
$\Delta \mathrm{H}=-75 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CCl}_{4}(\mathrm{l})$
$\Delta \mathrm{H}=-135 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g})$
$\Delta \mathrm{H}=-185 \mathrm{~kJ}$

Find the enthalpy change for the reaction: $\mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CCl}_{4}(\mathrm{l})+4 \mathrm{HCl}(\mathrm{g})$

Ans: - $\mathbf{4 3 0} \mathbf{k J}$

Reverse eqn 1; Eqn 3×2; Add
2. You are given the following reactions with their respective enthalpies:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
$\Delta \mathrm{H}=180 \mathrm{~kJ}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta \mathrm{H}=-90 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}=-240 \mathrm{~kJ}$

Find the enthalpy change for the reaction: $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Ans: - 900 kJ
Eqn 1×2; Reverse eqn 2×2; Eqn 3×6; Add
3. You are given the following reactions with their respective enthalpies:
$\begin{array}{ll}\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) & \Delta \mathrm{H}=-90 \mathrm{~kJ} \\ \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) & \Delta \mathrm{H}=-75 \mathrm{~kJ} \\ 2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCN}(\mathrm{g}) & \Delta \mathrm{H}=270 \mathrm{~kJ}\end{array}$
Find the enthalpy change for the reaction: $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{HCN}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$

Ans: $\mathbf{2 5 5}$ kJ

Reverse eqn $1 \div 2$; Reverse eqn 2 ; eqn $3 \div 2$; Add

1. Given that, 6.0×10^{22} molecules of methane are released from a vessel containing an original amount of 6.4 g , determine the number of molecules of methane remaining in the container. Take the molecular mass of methane as $16 \mathrm{~g} / \mathrm{mol}$ and Avogadro's number as 6.0×10^{23}.

Ans: $\mathbf{1 . 8} \times \mathbf{1 0}^{\mathbf{2 3}}$

Moles of methane $=6.4 / 16=0.40 \mathrm{~mol}$
Original number of molecules $=0.40 \times 6.0 \times 10^{23}=2.4 \times 10^{23}$
Number of molecules remaining $=2.4 \times 10^{23}-6.0 \times 10^{22}=1.8 \times 10^{23}$
2. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{ZnS}+\mathrm{AlP} \rightarrow \mathrm{Zn}_{3} \mathrm{P}_{2}+\mathrm{Al}_{2} \mathrm{~S}_{3}$

Ans: 7

$3 Z n S+2 A l P \rightarrow n_{3} P_{2}+A l_{2} S_{3}$
3. How many molecules of water are present in hydrated $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ given that the molecular mass of the hydrated salt is 268.1 g . You are given atomic mass $(\mathrm{g} / \mathrm{mol})$ of $\mathrm{Na}, \mathrm{P}, \mathrm{O}$ and H as 23,31 , 16 , and 1.0 .

Ans: 7

Number of $\mathrm{H}_{2} \mathrm{O}$ molecules $=(268.1-142) / 18=7$
Given the following equilibrium constant expressions, provide the balanced equation for the reactions assuming they all occur in the gaseous phase:

1. $\mathrm{Kc}=\left[\mathrm{CO}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$

$$
\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]^{5}
$$

Ans: $2 \mathrm{C}_{2} \mathrm{H}_{2}+\mathbf{5} \mathrm{O}_{2} \rightleftharpoons 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{Kc}=\left[\mathrm{CS}_{2}\right]\left[\mathrm{H}_{2}\right]^{4}$
$\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}$

Ans: $\mathrm{CH}_{\mathbf{4}}+\mathbf{2} \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{CS}_{2}+\mathbf{4} \mathrm{H}_{\mathbf{2}}$

3. $\mathrm{Kc}=\left[\mathrm{N}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}$

$$
\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{3}
$$

Ans: $\mathbf{4} \mathrm{NH}_{3}+\mathbf{3} \mathrm{O}_{2} \rightleftharpoons 2 \mathbf{N}_{2}+\mathbf{6} \mathrm{H}_{2} \mathrm{O}$

1. The mass of 0.20 moles of the compound XSO_{4} is 30.2 g . Determine the atomic mass of element X . You are given atomic mass of S and O as 32 and 16 respectively.

Ans: $\mathbf{5 5} \mathbf{g} / \mathrm{mol}$

Molar mass of $\mathrm{XSO}_{4}=30.2 / 0.20=151$
Mass of X $=151-96=55$
2. The mass of 0.10 moles of a hypothetical compound $\mathrm{H}_{2} \mathrm{X}_{2} \mathrm{O}_{8}$ is 18.2 g . Determine the atomic mass of element X . You are given atomic mass of H and O as 1.0 and 16 respectively.

Ans: $\mathbf{2 6}$ g/mol

Molar mass of $\mathrm{H}_{2} \mathrm{X}_{2} \mathrm{O}_{8}=18.2 / 0.10=182$
Mass of $\mathrm{X}=(182-130) / 2=26$
3. The mass of 0.020 moles of a hypothetical compound $\mathrm{Mg}\left(\mathrm{XO}_{3}\right)_{2}$ is 3.48 g . Determine the atomic mass of element X . You are given atomic mass of Mg and O as 24 and 16 respectively.

Ans: $\mathbf{2 7}$ g/mol

Molar mass of $\mathrm{H}_{2} \mathrm{X}_{2} \mathrm{O}_{8}=3.48 / 0.020=174$
Mass of $\mathrm{X}=(174-120) / 2=27$

1. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{Li}_{3} \mathrm{~N} \rightarrow \mathrm{Li}+\mathrm{N}_{2}$

Ans: 9
$2 \mathrm{Li}_{3} \mathrm{~N} \rightarrow 6 \mathrm{Li}+\mathrm{N}_{2}$
2. Two vessels, A and B containing 1.4×10^{23} molecules and 8.0 g of oxygen gas are allowed to mix. Determine the combined number of molecules of oxygen present. Take the atomic mass of oxygen as $16 \mathrm{~g} / \mathrm{mol}$ and Avogadro's number as 6.0×10^{23}.
Ans: $\mathbf{2 . 9 \times 1 0 ^ { 2 3 }}$
Number of molecules in vessel A $=1.4 \times 10^{23}$
Moles in vessel $B=8.0 / 32=0.25$
N umber of molecules in vessel $\mathrm{B}=0.25 \times 6.0 \times 10^{23}=1.5 \times 10^{23}$
Total number of molecules $=1.4 \times 10^{23}+1.5 \times 10^{23}=2.9 \times 10^{23}$
3. Determine the maximum amount (in grams) of SO_{3} formed when 9.6 g each of Sulphur and oxygen gas react. Take atomic mass of Sulphur and oxygen as 32 and 16, respectively.

Ans: $\mathbf{1 6 g}$
$2 \mathrm{~S}+3 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
$\mathrm{n}(\mathrm{S})=\mathrm{n}\left(\mathrm{O}_{2}\right)=9.6 / 32=0.30$ mole .
$\mathrm{n}\left(\mathrm{SO}_{3}\right)=0.20$ moles from O_{2} (limiting reagent)
mass of $\mathrm{SO}_{3}=0.20 \times 80=16 \mathrm{~g}$
Balance the following half-reactions in an acidic medium and indicate whether it is an oxidizing or reducing half:

1. $\mathrm{Ti}^{3+} \rightarrow \mathrm{TiO}_{2}$

Ans: $\mathrm{Ti}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{T i O}_{2}+\mathbf{4} \mathbf{H}^{+}+\mathrm{e} \quad$ oxidizing half reaction
2. $\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{NH}_{4}{ }^{+}$

Ans: $\mathrm{NO}_{3}^{-}+10 \mathrm{H}^{+}+8 \mathrm{e} \rightarrow \mathrm{NH}_{4}^{+}+\mathbf{3} \mathrm{H}_{2} \mathrm{O} \quad$ reducing half reaction
3. $\mathrm{Bi}^{3+} \rightarrow \mathrm{BiO}_{3}^{-}$

Ans: $\mathrm{Bi}^{\mathbf{3 +}}+\mathbf{3} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BiO}_{3}^{-}+\mathbf{6} \mathrm{H}^{+}+2 \mathrm{e}$
oxidizing half reaction

1. The analysis of 4.8 g of an organic compound produced 13.2 g of carbon dioxide following combustion. Determine the percentage of carbon present in the compound. ($\mathrm{C}=12.0 ; \mathrm{O}=16.0$, $\mathrm{H}=1.00$)

Ans: 75\%
Mass of $\mathrm{C}=12 / 44 \times 13.2=3.60 \mathrm{~g}$
$\% \mathrm{C}=3.6 / 4.80 \times 100=75 \%$
2. Given that the organic compound contains 75% of Carbon, 20% of oxygen and 5% of hydrogen, determine the empirical formula of the compound. ($\mathrm{C}=12.0 ; \mathrm{O}=16.0, \mathrm{H}=1.00$)

Ans: $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}$

$\mathrm{C}=\frac{75}{12}=6.25$
$\mathrm{H}=\frac{5}{1}=5$
$\mathrm{O}=\frac{20}{16}=1.25$

Hence ratio $=5: 4: 1$
3. Given that the molecular mass of the compound is 241 g , determine the molecular formula of the compound given its empirical formula as $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O} .(\mathrm{C}=12.0 ; \mathrm{O}=16.0, \mathrm{H}=1.00)$

Ans: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$

Empirical formula mass $=80 \mathrm{~g} / \mathrm{mol}$
$241 / 80=3$ Hence Molecular formula $=\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$

1. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$

Ans: 18

$\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{I}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
2. When $1 \mathrm{dm}^{3}$ solution of a saturated solution of CaSO_{4} is evaporated to dryness, 2.72 mg of residue is obtained. Take atomic mass of Ca, O and $\mathrm{S}(\mathrm{g} / \mathrm{mol})$ as 40,16 and $32 \mathrm{~g} / \mathrm{mol}$ respectively. Calculate the solubility product for CaSO_{4} at $25^{\circ} \mathrm{C}$.

Ans: $\mathbf{4 . 0 \times 1 0 ^ { - 1 0 }}$

$\mathrm{CaSO}_{4} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}$
Molar solubility $=0.00272 / 136=2.0 \times 10^{-5} \mathrm{~mol}$
$\mathrm{Ksp}=\left(2.0 \times 10^{-5}\right)^{2}=4.0 \times 10^{-10}$
3. The elements A and B have 5 and 2 electrons respectively in their outermost shell. What is likely to be the formula of the compound found between A and B?

Ans: $\mathbf{B}_{3} \mathbf{A}_{2}$

Give the identity of the following species

1. A transition element with 23 protons and 21 electrons

Ans: $\mathbf{V}^{\mathbf{2 +}} \quad$ (V for Vanadium)

2. A halogen with 35 protons and 36 electrons

Ans: $\mathbf{B r}^{-} \quad$ ($\mathbf{B r}$ for Bromine)

3. An alkali earth metal with 38 protons and 36 electrons

Ans: $\mathbf{S r}^{2+}$
 ($\mathbf{S r}$ for Strontium)

Indicate the solubility product expression for the following salts in terms of solubility ' s ':

1. $\mathrm{Ag}_{2} \mathrm{CO}_{3}$

> Ans: $\mathrm{K} \mathbf{s p}=\mathbf{4 \mathbf { s } ^ { 3 }}$ $$
\mathrm{Ag}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Ag}^{+}+\mathrm{CO}_{3}{ }^{2-}
$$ $\mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right]=(2 \mathrm{~s})^{2} \mathrm{~s}=4 \mathrm{~s}^{3}$

2. $\mathrm{Ag}_{3} \mathrm{PO}_{4}$

Ans: $\mathbf{K s p}=\mathbf{2 7} \mathbf{s}^{\mathbf{4}}$
$\mathrm{Ag}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{Ag}^{+}+\mathrm{PO}_{4}{ }^{3-}$
$\mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]=(3 \mathrm{~s})^{3} \mathrm{~s}=27 \mathrm{~s}^{3} \cdot \mathrm{~s}=27 \mathrm{~s}^{4}$
3. $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Ans: $\mathrm{Ksp}=108 s^{5}$

$\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2} \rightarrow 3 \mathrm{~Pb}^{2+}+2 \mathrm{PO}_{4}^{3-}$
$\mathrm{Ksp}=\left[\mathrm{Pb}^{2+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{2}=(3 \mathrm{~s})^{3}(2 \mathrm{~s})^{2}=27 \mathrm{~s}^{3} \cdot 4 \mathrm{~s}^{2}=108 \mathrm{~s}^{5}$

1. Determine the sum of the stoichiometric coefficients of all reactants and products present in a balanced equation of the reaction: $\mathrm{Si}_{2} \mathrm{H}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{SiO}_{2}+\mathrm{H}_{2} \mathrm{O}_{3}$

Ans: 35
$4 \mathrm{Si}_{2} \mathrm{H}_{3}+17 \mathrm{O}_{2} \rightarrow 8 \mathrm{SiO}_{2}+6 \mathrm{H}_{2} \mathrm{O}_{3}$
2. Determine the mass of lithium oxide formed when 18.5 g of lithium carbonate is heated. Take the atomic mass of lithium, carbon, and oxygen as $7.00,12.0$ and 16.0 , respectively.

Ans: 7.50 g
$\mathrm{Li}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Moles of $\mathrm{Li}_{2} \mathrm{CO}_{3}=18.5 / 74=0.250$
Mass of $\mathrm{Li}_{2} \mathrm{O}=0.250 \times 30=7.50 \mathrm{~g} / \mathrm{mol}$
3. What is the hybridized state of carbon in carbon dioxide and ethene?

Ans: sp and sp3

